| 研究生: |
盧奐婷 Lu, Huang-Ting |
|---|---|
| 論文名稱: |
家禽始基生殖細胞體外長期培養系統的建立 Establishment of the long-term in vitro culture system for chicken primordial germ cells |
| 指導教授: |
陳立人
Chen, Lih-Ren 戴謙 Tai, Chein |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 幹細胞 、家禽始基生殖細胞 、細胞培養系統 |
| 外文關鍵詞: | embryonic germ cells, primordial germ cells, in vitro culture system |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由哺乳動物胎兒時期的原始性腺分離始基生殖細胞,經培養所得到的胚生殖幹細胞為未分化且具分化多能性的幹細胞。本研究的目的旨在利用哺乳動物生殖幹細胞的培養技術,予以適當的修正後,嘗試建立雞的始基生殖細胞分離及其於體外的(in vitro)長期培養的方法,並對所培養出來的始基生殖細胞進行細胞特性分析。試驗係自5.5天大的雞胎中取出性腺。然後以含有0.53mM EDTA的0.05% trypsin處理使性腺組織細胞分散後,將這些細胞培養在以0.1% gelatin處理過的4-well plates中,並以四種經不同的成纖維細胞[CEF (non-inactivation), CEF (inactivation), STO (non-inactivation), STO (inactivation)]調整過的培養基添加生長因子(mLIF, hSCF, hbFGF, hIGF-1, hIL-11)來維持始基生殖細胞的生長。結果顯示,所有被調整過的培養基皆可促進始基生殖細胞的生長以及形成細胞群落;且經測試結果發現,以利用去活性的雞胚胎成纖維細胞所調整過的培養基對於雞始基生殖細胞的增生情形有最佳的促進效果。這些細胞群落可以被對始基生殖細胞特異親和性的PAS染劑及對未分化之胚幹細胞具有特異性的抗體anti-SSEA-1染上,並且將培養後之PGCs注入雞胚中,兩天之後在其性腺可找到移行的PGCs。因此,本研究已成功地建立了雞始基生殖細胞的體外長期培養系統。未來將對這些雞始基生殖細胞衍生的細胞株之特性與分化能力做更進一步的探討。
Embryonic germ cells derived from primordial germ cells (PGCs) are undifferentiated and pluripotent. The objective of this study was to establish the long-term in vitro culture system for chicken PGCs. Primitive gonads were collected from 5.5-day-old (stage 28) chicken embryos and dissociated in 0.05% trypsin solution supplemented with 0.53mM EDTA. After centrifugation at 200×g for 5 min, these cells were seeded onto 4-well plates which were pre-coated with 0.1% gelatin. Each of the four different conditioned medium [CEF (non-inactivation), CEF (inactivation), STO (non-inactivation), STO (inactivation)] supplemented with growth factors (mLIF, hSCF, hbFGF, hIGF-1, hIL-11) was used to maintain the growth of PGCs. The result showed that all the conditioned media could promote the growth and colony formation of PGCs in vitro, in particular the medium conditioned by CEF (inactivation). These PGC-derived colonies were positively stained with PAS (a PGC-specific stain) and anti-SSEA-1(a monoclonal antibody specific to undifferentiated embryonic stem cells). After transferring to the recipient embryos with EGFP-transfected cultured gPGCs, EGFP gene was detected in the gonads of recipients, and the migration of PGC was proved. These data indicate that the long-term in vitro culture system of chicken PGCs has been preliminarily established in this study. The characteristics and the differentiation capacity of these PGC-derived cells will be studied further.
王怡玲。鴨始基生殖細胞之非病毒轉染法。國立成功大學理學院生物
科技研究所碩士論文。2001。
Ando, Y. and Fujimoto, T. Ultrastructurel evidence that chick primordial
germ cells leave the blood-vascular system prior to migration to the
gonadal abalgen. Dev. Growth and Differentiation 25 345-52 (1983).
Bally, M.B., Harvie, P., Wong, F.M., Kong, S., Wasan, E.K. and Reimer,
D.L. Biological barriers to cellular delivery of lipid-based DNA cerriers.
Adv. Drug Deliv. Rev. 38 291-315 (1999).
Brackett, B.G., Baranska, W., Sawicki, W. and Kooprowski, H. Uptake of
heterologous genome by mammalian spermatozoa and its transfer to ova
through fertilization. Proc Natl Acad Sci USA 68 353-7 (1971).
Carsience, R.S., Clark, M.E., verrinder Gibbins, A.M. and Etches, R.J.
Germline chimeric chickens from dispersed donor blastodermal cells and
compromised recipient embryos. Development 117 669-75 (1993).
Clark, A.J., Simons, P., Wilmut, I. and Lathe, R. Pharmaceuticals from
transgenic livestock. Trends Biotechnol. 5 20-4 (1987).
Dahl, A., Eriksson, P.S, Persson, A.I, Karlsson, G., Davidsson, P., Ekman,
R. and Westman-Brinkmalm, A. Proteome analysis of conditioned
medium from cultured adult hippocampal progenitors. Rapid
Communications in Mass Spectrometry 17 2195-202 (2003).
Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells
from mouse embryos. Nature 292 154-6 (1981).
Eyal-Giladi, H., Ginsburg, M. and Fabarov, A. Avian primordial germ
cells are of epiblastic origin. J. Embryol. Exp. Morph. 65 139-47 (1981).
Etches, J.R., and Verrinder Gibbins, A.M. Strategies for the production of
transgenic chicken. Methods Mol Biol 62 433-50 (1997).
First N.L., Sims M.M., Park S.P., Kent-First M.J. Systems for production
of claves from cultured bovine embryonic cells. Repro. Fertil. Dev. 6
553-62 (1994).
Ginsburg, M. and Eyal-Giladi. H. Temporal and spatial aspects of the
gradual migration of primordial germ cells from the epiblast into the
germinal crescent in the avian embryo. J. Embryol. Exp. Morphol. 95
53-71 (1986).
Goldsmith, J.B. The history of the germ cells in the domestic fowl. J.
Morphol. Physiol. 46 275 (1928).
Hamburger, V. and Hamilton, H.L. A series of normal stages in the
development of the chick embryo. J. Morph. 8 49-92 (1951).
Hong, Y.H., Moon, Y.K., Jeong, D.K. and Han, J.Y. Improved transfection
efficiency of chicken gonadal primordial germ cells for the production of
transgenic poultry. Transgenic Res. 7 247-52 (1998).
Han J.Y. , Park, T.S., Hong, J.H., Jeong, D.K., Kim, J.N., Kim, K.D. and
Lim, J.M. Production of germline chimeras by transfer of chicken gonadal
primordial germ cells maintained in vitro for an extended period.
Theriogenology 58 1531-9 (2002).
Karagenç, L., Cinnamon, Y., Ginsburg, M. and Petitte, J.N. Origin of
primordial germ cells in the prestreak chick embryo. Developmental
Genetics 19 290–301 (1996).
Lavitrano, M., Camaioni, A., Fazio, V.M., Dolci, S., Farace, M.G. and
Spadafora, C. Sperm cells as vectors for introducing foreign DNA into
eggs: genetic transformation of mice. Cell 57 717-23 (1989).
Lavitrano, M., French, D., Zani, M., Frati, L. and Spadafora, C. The
interaction between exogenous DNA and sperm cells. Mol Reprod Dev 31
161-83 (1992).
Leber, S.M., Yamagata, M. and Sanes, J.R. Gene transfer using
replication-defective retroviral and adenoviral vectors. Methods Cell Biol.
51 161-83 (1996).
Levavasseur, F., Mandemakers, W., Visser, P., Broos, L., Grosveld, F.,
Zivkovic, D. and Meijer, D. Comparison of sequence and function of the
Oct-6 genes in zebrafish, chick and mouse. Mechanisms of Development
74 89-98 (1998).
Love, J., Gribbin, C., Mather C., and Sang, H. Transgenic birds by DNA
microinjection. Biotechnology 12 60-3 (1994).
Loveless, W., Bellairs, R., Thorpe, S.J., Page, M. and Feiz, T.
Developmental patterning of carbohydrate antigen FC10.2 during early
embryogenesis in the chick. Development 108 97–106 (1990).
Macha, J., Stursova, D., Takac, M., Habrova, V. and Jonak, J. Uptake of
plasmid RSV DNA by frog and mouse spermatozoa. Folia. Biol. (Praha)
43 123-7 (1997).
Mainoe, B., Pittoggi, C., Achene, L., Lorenzini, R. and Spadafora, C.
Activation of endogenous nuclease in mature sperm cells upon interaction
with exogenous DNA. DNA Cell Biol. 16 1087-97 (1997).
Meyer, D.B. Application of period acid–Schiff technique to whole chick
embryos. Stain Technology 35 83–9 (1960).
Millis, A.J., Hoyle M. and Field B. Human fibroblast conditioned media
contains growth-promoting activities for low density cells. J. Cell Physiol.
93 17-24 (1977)
Muramatsu, T., Mizutani, Y., Ohomori, Y. amd Okamura, J. Comparison
of three nonviral transfection methods for foreign gene expression in early
chicken embryos in ovo. Biochem. Biophys. Res. Commun. 13 376-80
(1997).
Nakamura, M., Kuwana, T., Miyayama, Y. and Fujimoto, T.
Extragonadal distribution of primordial germ cells in the early chick
embryo. Anat. Rec. 222 90-4 (1988).
Natio, M., Tajima, A., Tagami, T., Yasuda, Y. and Kuwana, T. Preservation
of chick primordial germ cells in liquid nitrogen and aubsequent
production of viable offspring. J. Reprod. Fertil. 102 321-5 (1994a).
Natio, M., Tajima, A., Tagami, T., Yasuda, Y. and Kuwana, T. Production
of germline chimeric chickens, with high transmission rate of donor-
derived gametes, produced by transfer of primordial germ cells. Mol. Reprod. Dev. 39 153-61 (1994b).
Nieuwkoop, P.D. and Sutasurya, L.A. The migration of primordial germ
cells. In. Primordial Germ Cells in the Chordates. Cambridge University
Press,Cambridge, Massachusetts, pp. 113–27 (1979).
Pain, B., Clark, M.E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J.
and Etches, R.J. Long-term in vitro culture and characterization of avian
embryonic stem cells with multiple morphogenetic potentialities.
Development 122 2339-48 (1996).
Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C. and Evans, R.M. Dramatic growth of mice that develop from eggs micro-injection with methallothione in-growth hormone fusion genes. Nature 300 611-5 (1982).
Pedroso de Lima, M.C., Simoes, S., Pires, P., Faneca, H., Duzgune, and Scedil. Cationic lipid-DNA complexes in gene delivery: form biophysics to biological applications. Adv. Drug Deliv. Rev. 47(2-3) 277-94 (2001).
Perry, M.M. A complete culture system for the chicken embryo. Nature 331 70-2 (1988).
Petitte, J.N., Clark, M.E., Liu, G., Verrinder Gibbins, A.M. and Etches, R. J. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108 185-9 (1990).
Petitte, J. N., Cosat, S. and Karagenc, L. Understanding the origin of avian primordial germ cells: implication for germ cell culture and trandgenesis in poultry. Transgenic Animals in Agriculture 97-116 (1999).
Puhler, A. Genetic Engineering of Animals, VCH, New York, NY(USA) (1993).
Radler, J.O., Koltover, I., Salditt, T., and Safinya, C.R. Structure of DNA-cationic liposome complexes: DNA interaction in multilamellar membranes in distinct interhelical packing regimes. Science 275 810-4 (1997).
Robert I. Avian transgenesis: progress towards the promise. Trends in biotechnology 21 14-9 (2003).
Sang, H. and Perry, M.M. Episomal replication of cloned DNA injected into fertilized ovum of the hen, Gallus domesacus. Mol. Reprod. Dev. 1 98-106 (1989).
Sang, H. Transgenic chickens—methods and potential applications. Trends Biotechnol. 12 415-20 (1994).
Seeburg, P.H. Synthesis of growth hormone by bacteria. Nature 276 795-8 (1978).
Shamblott M.J., Axelman J, Wang S, Bugg E.M., Littlefield J.W., Donovan P.J., Blumenthal P.D., Huggins G.R. and Gearhart J.D. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sc.i 95 13726-31 (1998).
Sin, F.Y., Walker, S.P., Symponds, J.E., Mukherjee, U.K., Khoo, J.G.. and Sin, I.L. Electroporation of salmon sperm for gene transfer: Efficiency, reliability, and fate of trangene. Mol. Reprod. Dev. 56 285-8 (2000).
Solter, D. and Knowles, B.B. Monoclonal antibody defining stage specific mouse embryonic antigen (SSEA-1). Proc. Nat. Acad. Sci. USA 75 5565 (1978).
Sukharev, S.I., Klenchin, V.A., Serov, S.M., Chernomordik, L.V. and Chizmadzhev Yu, A. Electroporation and Electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 63 1320-7 (1992).
Swift, C.H. Origin and early history of the primordial germ cells in the chick. Am. J. Anat. 15 483-516 (1914).
Park, T.S. and Han, J.Y. Derivation and characterization of pluripotent embryonic germ cells in chicken. Mol. Reprod. Dev. 56 475-82 (2000).
Takaharu K., Koichiro K., Yasuyuki K., Yoshinori T. and Koichiro H. Embryonic fibroblast-conditioned medium enhances viability and proliferation of chick circulating primordial germ cells (cPGCs) in suspension culture. Journal of Reproduction and Development 48 143-50 (2002).
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. Embryonic stem cell line derived from human blastocysts. Science 282 1145-7 (1998).
Tsai, H.J. Electroporated sperm mediation of a gene transfer system for finfish and shellfish. Mol. Reprod. Dev. 56 281-4 (2000).
Ukeshima, A., Yoshinaga, K. and Fujimoto, T. Scanning and transmission electron microscopic observations of chick primordial germ cells with special reference to the extravasation in their migration course. J. Electron Microscopy 40 124-8 (1991).
Urven, I.E., Erickson, C.A., Abbott, U.K. and McCarrey, J.R. Analysis of germline development in the chick using anti-mouse EC cell antibody. Development 103 299–304 (1988).
Villa-Komaroff, L. A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci. USA 75 3727-31 (1978).
Wasan, E.K., Reimer, D.L., and Bally, M.B. Plasmid DNA is protected against ultrasonic cavitation-induced damage when complexed to cationic liposome. J. Pharm. Sci. 85 427-33 (1996).
Williams, D.C. et al., Cytoplasmic inclusion bodies in E. coli producing biosynthetic human insulin proteins. Science 215 687-9 (1982).
Xie, T.D. and Tsong, T.Y. Study of mechanisms of electric field-induced DNA transfection. V. Effects of DNA topology on surface binding, cell uptake, expression, and integration into host chromosomes of DNA in the mammalian cell. Biophys. J. 65 1684-9 (1993).
Xu, C., Inokuma, M.S., Denham, J., Gold, K., Kundu, P., Gold, J.D. and Carpenter, M.K. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology 19 971-4 (2001).