| 研究生: |
劉信宏 Liou, Shin-Hung |
|---|---|
| 論文名稱: |
極低溫下PN接面考慮能帶尾部的理論電特性 Theoretical Electrical Characteristics of PN Junctions Considering Band-tail at Cryogenic Temperatures |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 帶尾態 、烏爾巴能量 、局部態 、擴展態 、金氧半場效電晶體 、次臨界擺幅 、極低溫 、PN接面 、遷移率 、生命期 |
| 外文關鍵詞: | band-tail states, Urbach energy, localized states, extended states, MOSFET, subthreshold swing, cryogenic temperatures, PN junction, mobility, lifetime |
| 相關次數: | 點閱:160 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
典型MOSFET的次臨界導通電流I_D作為施加的柵極電壓V_GS的函數,並且次臨界擺幅表達式SS(T)=m*ln10*kT/q具有作為溫度T的函數的玻爾茲曼極限,由SS(T)給出= ln10 * kT / q。儘管如此,根據不同製程的低溫溫度研究皆指出,低於20K或更低的SS值至少比Boltzmann極限預測的SS值大上幾個數量級。又根據近年的研究,隨著溫度的降低,接近帶邊緣的界面陷阱密度逐漸增加的概念儼然成為用來理解次臨界擺幅飽和的主流觀念,然而從次臨界區域的SS實驗結果中於超低溫萃取的過高的界面陷阱濃度值仍然存在爭議而引發討論。因此部分研究者開始嘗試重新理解考慮能帶尾模型的次臨界擺幅數學理論,並假設I_D與臨界溫度以下的exp((qV_GS)/W_t )成正比以解釋FET中SS的低溫飽和度(W_t是烏爾巴赫能量)。
在本論文中,我們也採用能態尾部的能態密度理論建構數學模型,來探索PN接面考慮尾態的元件電流其次臨界擺幅飽和度。通過導電(價)帶邊緣的狀態密度乘以費米-狄拉克分佈函數的數值積分來計算其在空乏區邊界上的粒子濃度,使其在中性區域擴散,以模擬PN接面中的帶尾電流。當臨界溫度T_0約等於35/70/105/140K時,其分別對應於W_t等於3/6/9/12meV,次臨界擺幅的飽和值SS(T <T_0 )=ln10*(kT_0)/q=ln10*W_t/q,其由超幾何函數的數學性質也獲得了驗證且巧妙地說明了本論文中PN接面從300K下降到20 K的SS(T)模擬圖形,其和在次臨界區域內匹配MOSFET的SS(T)有著極為相似的結果。我們的一系列分析亦點出當我們進行各種類型的低溫電路設計時,非規則性造成的能帶尾部延伸效應將影響低溫量子元件的開關等性質。
The drain current I_D of a typical MOSFET in subthreshold region is a function of the applied gate voltage V_GS, and the subthreshold swing expression SS(T)=(dV_GS)/(dlogI_D ) has a Boltzmann limit as a function of temperature T, which is determined by SS(T)=m*ln10*kT/q. Nonetheless, recent low-temperature temperature studies based on different processes have pointed out that SS values below 20K or lower are at least several orders of magnitude larger than that predicted by Boltzmann's limit. According to recent studies, as the temperature decreases, the concept that the interface trap density gradually increases close to the edge of the band has become the mainstream concept for understanding sub-threshold swing saturation. However, the excessively high interface trap concentration values extracted from the SS experimental results in the sub-threshold region at the ultra-low temperatures are still controversial and aroused discussion. Therefore, some researchers began to try to re-comprehend the mathematical application of subthreshold swing considering the band tail model, and assume that I_D is proportional to exp((qV_GS)/W_t ) below the critical temperatures to explain the saturation of SS at low temperatures in FET (W_t is the Urbach energy).
In this dissertion, we also use the band-tail DOS theory to construct a mathematical model and explore the subthreshold swing saturation of IV curves considering the tail state of the PN junction. Via calculating the numerical integration of the particle concentration at the boundary of the depletion region by multiplying the state density at the edge of the conduction (valence) band with Fermi-Dirac distribution function and then let it diffuses in the quasi-neutral region to simulate the band-tail current in PN junction. When the critical temperature T_0 is approximately equal to 35/70/105/140K, which respectively correspond to W_t at 3/6/9/12meV, the saturation value of the sub-threshold swing SS(T <T_0 )=ln10*(kT_0)/q=ln10*W_t/q, which is also verified by the mathematical properties of the hypergeometric function and ingeniously illustrates the SS(T ) simulation graph of the PN junction falling from 300K to 20K in this work. Moreover, there is good match to the SS(T ) of the MOSFET in the subthreshold region. Our series of analyses also highlight that when we design various types of low-temperature circuits, the band tail extension effect caused by disorder would affect the switching properties of low-temperature quantum devices.
References in chapter 1
[1] Fitrio, D. et al. “Subthreshold leakage current reduction techniques for static random access memory.” SPIE Micro + Nano Materials, Devices, and Applications (2005).
[2] Cheung, K.P. On the 60 mV/dec@ 300 K limit for MOSFET subthreshold swing. In Proceedings of 2010 International Symposium on VLSI Technology, System and Application.
[3] W. Y. Choi, B. Park, J. D. Lee and T. K. Liu, "Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec," in IEEE Electron Device Letters, vol. 28, no. 8, pp. 743-745, Aug. 2007.
[4] P. Galy, J. C. Lemyre, P. Lemieux, F. Arnaud, D. Drouin and M. Pioro-Ladrière, "Cryogenic temperature characterization of a 28-nm FD-SOI dedicated structure for advanced CMOS and quantum technologies co-integration", IEEE J. Electron Devices Soc., vol. 6, pp. 594-600, May 2018.
[5] Arnout Beckers, Farzan Jazaeri, Christian Enz, Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors, IEEE Electron Device Lett., 41 (2) (2020) 276–279.
[6] R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures,” IEEE J. Electron Devices Soc., vol. 6, pp. 996–1006, Apr. 2018.
[7] Neamen, D. A., Ed. Semiconductor Physics and Devices: Basic Principles, 2nd ed.; Irwin: Chicago, 1996.
[8] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).
[9] Adapted after Prof. A. M. Ionescu
[10] P. Biljanovic and T. Suligoj, “Thermionic emission process in carrier transport in PN homojunctions,” in Proc. Electrotechn. Conf. (MELECON), May 2000, pp. 248–251.
References in chapter 2
[1] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).
[2] E. Quiniou, O. Palais, D. Barakel, and I. Périchaud, Temperature dependent lifetime spectroscopy (TDLS) for the identification of metallic impurities, Energy Procedia 92, 180 (2016).
[3] Jia, G. Characterization of Electrical and Optical Properties of Silicon Based Materials; Fakultät für Mathematik; Naturwissenschaften und Informatik: Cottbus, Germany, 2010.
[4] J. Dziewior and W. Schmid, "Auger coefficients for highly doped and highly excited silicon", Appl. Phys. Lett., vol. 31, pp. 346-348, September 1977.
[5] L. Pavesi, “Routes toward silicon-based laser,” Mater. Today, vol. 8, no. 1, pp. 18–25, Jan. 2005.
[6] Kerr MJ, Cuevas A (2002) General parameterization of auger recombination in crystalline silicon. J Appl Phys 91:2473–2480
[7] D. H. Macdonald, “Recombination and Trapping in Multicrystalline Silicon Solar Cells”, Thesis, The Australian National University (2001)
[8] Johnston, Steve, et al. "Temperature-dependent Photoluminescence imaging and characterization of a multicrystalline silicon solar cell defect area."Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE. IEEE, 2011.
[9] S. Wang and D. Macdonald, “Temperature dependence of Auger recombination in highly injected crystalline silicon,” J. Appl. Phys. 112(11), 113708 (2012).
[10] Saleh, M.H., Study of structural, optical and electrical properties of PbI2 thin films prepared by flash-evaporation technique. (Ph.D. Thesis, University of Jordan, Amman, Jordan, 2011).
[11] H. Huang, W. Cao, H. Lin and Y. Chin, "GaAs1-Sb /GaAs single quantum well for long wavelength photonic devices", Solid State Electronics Letters, vol. 1, no. 2, pp. 98-104, 2019.
[12] Ibrahim, S. N. (2017). Effect of temperature on silicon carriers mobilities using matlab. Al-Mustansiriyah Journal of Science, 28(3), 214.
[13] Slidesplayer.com. n.d. 基礎半導體物理載子傳輸現象電場及濃度梯度影響下之帶電載子的運動. - ppt download. [online] Available at: <https://slidesplayer.com/slide/11252027/>.
[14] A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz, “Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing,” in Proc. 2017 47th European SolidState Device Research Conference (ESSDERC), Sep. 2017, pp. 62–65.
[15] Arnout Beckers, Farzan Jazaeri, Christian Enz, Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors, IEEE Electron Device Lett., 41 (2) (2020) 276–279.
[16] S. Sant and A. Schenk, “The effect of density-of-state tails on band to-band tunneling: Theory and application to tunnel field effect transistors,” J. Appl. Phys., vol. 122, no. 13, p. 135702, Oct. 2017.
References in chapter 3
[1] Guan C., Guan X., 2019 “A brief introduction to Anderson Localization”, May 18, 2019
[2] C. Gehrmann and D. Egger, "Dynamic shortening of disorder potentials in anharmonic halide perovskites", Nature Communications, vol. 10, no. 1, 2019.
[3] S. Aljishi, S. Jin and L. Ley, "Defects and disorder broadened band tails in compensated hydrogenated amorphous silicon", Journal of Non-Crystalline Solids, vol. 137-138, pp. 387-390, 1991.
[4] H. Terletska et al., "Systematic Quantum Cluster Typical Medium Method for the Study of Localization in Strongly Disordered Electronic Systems", Applied Sciences, vol. 8, no. 12, p. 2401, 2018.
[5] Pfanner, G. et al. Dangling-bond defect in a-Si: H: Characterization of network and strain effects by first-principles calculation of the EPR parameters. Phys. Rev. B 87, 125308 (2013)
[6] J. Wager, "Real- and reciprocal-space attributes of band tail states", AIP Advances, vol. 7, no. 12, p. 125321, 2017.
[7] M. Auslender, S. Hava, Single-crystal silicon: electrical and optical properties, in Springer Handbook of Electronic and Photonic Materials, Springer Handbooks, eds. By S. Kasap, P. Capper (Springer, Cham, 2017).
[8] J. Singh, I.-K. Oh, and S. O. Kasap, “Optical absorption, photoexcitation and excitons in solids: fundamental concepts,” in Photo-Excited Processes, Diagnostics and Applications, A. Peled, ed. (Kluwer, 2003), pp. 25–55.
[9] M.H. Saleh, M.M. Abdul-Gader Jafar, B.N. Bulos, T.M.F. Al-Daraghmeh, Determination of Optical Properties of Undoped Amorphous Selenium (a-Se) Films by Dielectric Modeling of Their Normal‐Incidence Transmittance Spectra, Appl. Phys. Res. 6 (10) (2014) 10–44.
[10] O. Belahssen, S. Benramache and B. Benhaoua, "Effect of Urbach energy with precursor molarity on the crystallite size in undoped ZnO thin film", Main Group Chemistry, vol. 13, no. 4, pp. 343-352, 2014.
[11] T. Tiedje, E. Yablonovitch, G. D. Cody and B. G. Brooks, "Limiting efficiency of silicon solar cells," in IEEE Transactions on Electron Devices, vol. 31, no. 5, pp. 711-716, May 1984.
[12] C. H. Grein and S. John, Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands, Phys. Rev. B 39, 1140 (1989).
[13] Pan, Y. et al. Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008).
[14] Arnout Beckers, Farzan Jazaeri, Christian Enz, Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors, IEEE Electron Device Lett., 41 (2) (2020) 276–279.
[15] Saleh, M.H., Study of structural, optical and electrical properties of PbI2 thin films prepared by flash-evaporation technique. (Ph.D. Thesis, University of Jordan, Amman, Jordan, 2011).
[16] D. Neamen , in Semiconductor Physics and Deveices , McGraw-Hill , New York 2003 .
[17] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).
References in chapter 4
[1] Arnout Beckers, Farzan Jazaeri, Christian Enz, Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors, IEEE Electron Device Lett., 41 (2) (2020) 276–279.
[2] H. Bohuslavskyi et al., "Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening," in IEEE Electron Device Letters, vol. 40, no. 5, pp. 784-787, May 2019
[3] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).
References in chapter 5
校內:2026-08-03公開