| 研究生: |
孫紹倫 Sun, Shao-Lun |
|---|---|
| 論文名稱: |
非線性邊界之樑的自由振動分析 Free Vibrations of a Beam with Nonlinear Boundary Conditions |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 動態 、非線性邊界 、樑 、自由振動 、移位函數 、移位函數法 、微擾法 |
| 外文關鍵詞: | dynamic, nonlinear boundary conditions, beam, free vibrations, shifting function method, perturbation method |
| 相關次數: | 點閱:122 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究主要著重於樑結構的具非線性彈性邊界的自由振動做問題探討。只要是邊界問題,都可使用移位函數法(Shifting function method),將邊界作移位,系統之邊界即可簡化,經此簡化可使系統之運算較易處理;並可配合使用疊代法探討其影響系統之振幅與頻率之關係。本文利用微擾法(Perturbation method) 將非線性邊界系統拆解成多組具遞迴關係之線性邊界子系統,而在其中使用微擾法時可以使其中子系統的邊界可以找出一組具規律性的遞迴關係式(Recurrence Formula),再搭配移位函數法(Shifting function method)對處理邊界問題相當有效,利用移位函數法求解出各子系統之解,則原本難解之非線性邊界問題,便能相當簡易的求解。
This study discusses the free vibrations of a beam with nonlinear boundary conditions. We can use the shifting function method to simplify and solve the boundary problem. The associated mathematic system is a fourth order partial differential equation with nonlinear boundary conditions. It is shifted and decomposed into five linear differential equations and at most four algebra equations. After finding the roots of the algebra equations, the exact solution of the nonlinear beam system can be reconstructed. One can find the relation between the amplitude and frequency of the system by applying shifting function method and iteration method.
We use perturbation method to decompose the nonlinear boundary conditions system of beam problem into many subsystems with linear boundary condition, and using shifting function to solve the subsystems, finally, the beam system can be reconstructed. During the solving process, we can fine a regular recurrence formula between the subsystems which can reduce the solving process.
[1] Fung, R. F.; Huang, S. C. (2001): Dynamic modeling and vibration analysis of the atomic force microscope, Transactions of ASME, Journal of Vibration and Acoustics, vol. 123, pp. 502-509.
[2] Lee, W. K.; Yeo, M. H. (1999): Two-mode interaction of a beam with a nonlinear boundary condition, Transactions of ASME, Journal of Vibration and Acoustics, vol. 121 pp. 84-88.
[3] Tabaddor M. (2000): Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam, International Journal of Solids and Structures, vol. 37, pp. 4915-4931.
[4] Lin, S. M.; Lee, S. Y.; Lin, K. W. (2007): Exact solutions of AFM scanning probes subjected to tip-sample force, Journal of Mechanics of Materials and Structures, vol. 2, pp. 897-910.
[5] Lee, S. Y.; Lin, S. M.; Lee, C. S.; Lu, S. Y.; Liu, Y. T. (2008): Exact large deflection of beams with nonlinear boundary conditions, CMES: Computer Modeling in Engineering & Sciences, vol. 30, no. 1, pp. 27-36.
[6] Lee, S. Y.; Lu, S. Y.; Liu, Y. T.; Huang, H. C. (2008): Exact Large Deflection Solutions for Timoshenko Beams with Nonlinear Boundary Conditions, CMES: Computer Modeling in Engineering & Sciences, vol. 33, no. 3, pp. 293-312.
[7] Ma, T. F. (2003): Existence results and numerical solutions for a beam equation with nonlinear boundary conditions, Applied Numerical Mathematics, vol. 47, pp. 189-196.
[8] Ma, T. F.; Silva, J. D. (2003): Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Applied Mathematics and Computation, vol. 159, pp. 11-18.
[9] Rabe, U.; Kester, E.; Arnold, W. (1999): Probing linear and nonlinear Tip-Sample interaction forces by atomic force acoustic microscope, Surface and Interface Analysis, vol. 27, pp. 386-391.
[10] Rao, G. V.; Naidu, N. R. (1994): Free vibration and stability behavior of uniform beams and columns with nonlinear elastic end rotational restraints, Journal of Sound and Vibration, vol. 176, pp. 130-135.
[11] Turner, J. A. (2004): Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions, Journal of Sound and Vibration, vol. 275, pp. 177-191.
[12] Wolf, K.; Gottlieb, O. (2001): Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated a piezoelectric layer, Journal of Applied Physical, vol. 91, no. 7, pp. 4701-4709.
[13] Beda, P. B. (2003): On deformation of an Euler-Bernoulli beam under terminal force and couple, CMES: Computer Modeling in Engineering & Sciences, vol. 4, no. 2, pp. 231-238.
[14] Foda, M. A. (1999): Influence of shear deformation and rotary inertia on nonlinear free vibration of a beam with pinned ends, Computers and Structures, vol. 71, pp. 663-670.
[15] He, J. H. (2000): A review on some new recently developed nonlinear analytical techniques, International Journal of Nonlinear Sciences and Numerical Simulation, vol. 1, pp. 51-70.
[16] Kargarnovin, M. H.; Younessian, D.; Thompson, D. J.; Jones C. J. C. (2005): Response of beams on nonlinear viscoelastic foundations to harmonic moving loads, Computers and Structures, vol. 83, no. 23-24, pp. 1865-1877.
[17] Kuo, Y. H.; Lee, S. Y. (1994): Deflection of nonuniform beams resting on a nonlinear elastic foundation, Computers and Structures, vol. 51, no. 5, pp. 513-519.
[18] Pellicano, F.; Mastroddi, F. (1997): Nonlinear Dynamics of a Beam on Elastic Foundation, Nonlinear Dynamics, vol. 14, pp. 335-355.
[19] Pellicano, F.; Vakakis, A. F. (2001): Normal modes and boundary layers for a slender tensioned beam on a nonlinear foundation, Nonlinear Dynamics, vol. 25, pp. 79-93.
[20] Qaisi, M. I. (1998): Non-linear normal modes of a continuous system, Journal of Sound and Vibration, vol. 209, pp. 561-569.
[21] Qaisi, M. I. (2003): Normal modes of a continuous system with quadratic and cubic non-linearities, Journal of Sound and Vibration, vol. 265, pp. 329-335.
[22] Touzé, C.; Thomas O.; Chaigne, A. (2004): Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes, Journal of Sound and Vibration, vol. 273, no. 1-2, pp.77-101.
[23] Xie, W. C.; Lee, H. P.; Lim, S. P. (2002): Normal modes of a non-linear clamped-clamped beam, Journal of Sound and Vibration, vol. 250, no. 2, pp. 339-349.
[24] Lee, S. Y.; Lin, S. M. (1996): Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions, ASME, Journal Applied Mechanics, vol. 63, pp. 474-478.
[25] Lee, S. Y.; Wang, W. R.; Chen, T. Y. (1998): A general approach on the mechanical analysis of non-uniform beams with non-homogeneous elastic boundary conditions, Transactions of ASME, Journal of Vibration and Acoustics, vol. 120, pp. 164-169.
[26] Rao, S. S. (2004): Mechanical Vibrations Fourth Edition, Pearson Education Inc, New Jersey.
[27] Lee, S. Y.; Kuo, Y. H. (1992): Exact solutions for the analysis of general elastically restrained nonuniform beams, ASME, Journal of Applied Mechanics, vol. 59, no. 2, pp. 205-212.
[28] Nayfeh, A. H. (2000): Introduction to Perturbation Techniques, Wiley Classics Library Edition Published, New York.
[29] Stoker, J. J. (1966): NONLINEAR VIBRATIONS in Mechanical and Electrical Systems, INTERSCIENCE PUBLISHERS, New York.
[30] 呂信毅 (2008):樑的非線性靜態及動態分析,國立成功大學機械工程學系碩士論文。
[31] 劉諺澤 (2009):邊界材料性質隨時間變化之樑的振動分析,國立成功大學機械工程學系碩士論文。
[32] 黃惠楨 (2009):邊界條件具有時變型熱傳係數之熱傳導問題分析,國立成功大學機械工程學系碩士論文。