簡易檢索 / 詳目顯示

研究生: 李奇錄
Li, Chi-Lu
論文名稱: 可變繞組發電機應用於海流發電系統之研究
Design and Realization of a Variable-Winding Generator for Ocean Power Systems
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 海流能再生能源永磁式發電機可變繞組發電機
外文關鍵詞: Permanent-magnet generators, Variable-winding generator, Ocean current energy, Renewable energy
相關次數: 點閱:83下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣四面環海,東部海域經年有強大穩定之黑潮北上,西部海域亦有數個海流強勁之區域,攜帶巨大之能量,因此適於再生能源之海流發電,若能穩定供電,則可提供國內部分電力,解決目前所面臨之能源問題。然而海流流速並非全然穩定,因此在擷取海流能時,發電系統須具備調節或控制能力以達到高輸出效率,例如具有最大功率追蹤,穩定電壓、定功率等功能。
    永磁發電機具高效率、高可靠度及高功率密度等優點,但也由於磁場來源為永久磁鐵之故,其發電機特性固定,例如其轉速與感應電壓之關係。因此,若欲達成最大功率追蹤,一般皆以發電機轉速控制加以達成。本論文藉由發電機可變繞組以改變之特性,探討可變發電機特性於發電系統之效能,結合流場環境、葉片特性及基本整流電路分析,藉由實作與實驗,驗證本論文之變結構發電機,可達成輸出特性如最大功率輸出、穩定功率等。

    Taiwan, as an island, is surrounded by ocean and seas. In the sea area of the Pacific Ocean near Taiwan, the steady Kuroshio Current, carrying massive energy, flows toward north. In the west sea area, there are also a few sites that have strong currents. These areas are suitable for constructing renewable energy power systems that can effectively convert ocean or tidal current energy to electricity. This would provide great help in solving the more and more severe energy crisis. However, the flow rate of the currents is not always steady, and a regulable or controllable power conversion system should be considered to achieve high conversion rate when absorbing ocean energy. Therefore, the functions of maximum power tracking, steady voltage output or power, etc., can be accomplished.
    Permanent-magnet (PM) generators have the advantages of high efficiency, reliability and power density. Due to the permanent magnets used, the characteristics of PM generators, such as the speed - induced voltage relationship is fixed. For peak power tracking, a speed controller is often applied to achieve the function. This thesis focuses on the characteristic regulation of permanent-magnet generators with winding changeover design to replace the speed controller. The turbine characteristic and a simple resistive load are considered to work with the designed regulable PM generator. Via experiments, the designed generator is capable of achieving the function of maximum power tracking, steady voltage output and steady power output.

    目錄 摘要.............................................I 英文摘要........................................II 致謝...........................................III 目錄............................................IV 表目錄.........................................VII 圖目錄........................................VIII 第一章 緒論 .................................1 1.1 前言 .................................1 1.2 研究動機與目的 .........................2 1.3 本文架構 .........................3 第二章 文獻回顧 .........................4 2.1 台灣海洋能及國外相關發展 .........4 2.2 功率曲線與控制 .........................7 2.2.1 功率曲線規劃 .........................7 2.2.2 最大功率追蹤 .........................8 2.2.3 定功率 ................................10 2.3 風力發電機之發電機探討 ................12 2.4 可變特性之電機設計 ................13 第三章 海流發電系統之組成與分析 ........17 3.1 台灣海流環境 ........................17 3.2 發電系統與功率流 ................23 3.2.1 功率流 ................................24 3.2.2 本文發電機特性定義 ................25 3.2.3 本文發電系統架構 ................25 3.2.4 本文輸出功率曲線規劃 ................26 3.3 葉片分析 ........................27 3.3.1 葉片動作原理 ........................27 3.3.2 與功率曲線 ........................30 3.4 變動流速匹配分析 ................32 3.4.1 發電機與葉片輸出功率曲線 ........32 3.4.2 最大功率與定電壓輸出 ................34 3.5 可變感應電動勢常數 ................37 3.6 發電機設計分析 ........................40 3.6.1 發電機磁路分析 ........................40 3.6.2 磁通鏈、感應電動勢、頓轉扭矩、銅損 46 3.6.3 繞組設計 ........................51 第四章 可變繞組發電機設計實作 ................55 4.1 可變繞組發電機設計流程 ................55 4.2 葉片特性量測 ........................56 4.2.1 葉片功率量測 ........................57 4.2.2 曲線繪製與規格制定 ................63 4.3 發電機設計 ........................66 4.3.1 基本條件規劃 ........................66 4.3.2 磁路設計 ........................69 4.3.3 繞組設計 ........................74 4.3.4 感應電動勢常數設計 ................80 4.4 磁路模擬 ........................83 第五章 實驗與結果 ........................85 5.1 發電機參數實驗 ........................85 5.2 變流速發電實驗 ........................86 第六章 結論與未來研究方向 ................92

    [1]A. J. G. Westlake, J. R. Bumby, and E. Spooner, “Damping the power-angle oscillations of a permanent-magnet synchronous generator with particular reference to wind turbine applications,” Proc. IEE—Electr. Power Appl., vol. 143, no. 3, pp. 269–280, May 1996.
    [2]Ansoft Corporation, Maxwell 2D field simulator user reference, 2000
    [3]Anca D. Hansen et al “Overall control strategy of variable speed doubly-fed induction generator wind turbine”, Proc. Nordic wind power conference 1-2 March , 2004
    [4]A. Mirecki, X. Roboam and F. Richardeau, “Architecture complexity and energy efficiency of small wind turbines,”, IEEE Trans. Ind. Electr., vol. 54, Issue 1, pp. 660 – 670, Feb. 2007
    [5]B. J. Chalmers, W. Wu, and E. Spooner, “An axial-flux permanent-magnet generator for a gearless wind energy system,” IEEE Trans. Energy Convers., vol. 14, no. 2, pp. 251–257, Jun. 1999.
    [6]C. H. Chen, M. Y. Cheng, and M. S. Tsai, “Study on a wide speed range integrated electrical transmission system,” Proc. IEEE Power Electronics and Drives Systems, vol. 1, 16-18, pp. 781 – 786, Jan. 2006.
    [7]D. Ishak, Z. Q. Zhu and D. Howe, “Permanent-magnet brushless machines with unequal tooth widths and similar slot and pole numbers," IEEE Trans. Ind. Appl., vol. 41, pp. 584 – 590, 2005.
    [8]D. Hanselman, Brushless Permanent Magnet Motor Design. The Writers’ collective, Cranston, Rhode Island. 2003.
    [9]E. Spooner, A. C. Williamson, and G. Catto, “Modular design of permanent-magnet generators for wind turbines,” Proc. IEE—Electr. Power Appl., vol. 143, no. 5, pp. 388–395, Sep. 1996.
    [10]E. Spooner and A. C. Williamson, “Direct coupled, permanent magnet generators for wind turbine applications,” Proc. IEE—Electr. Power Appl., vol. 143, no. 1, pp. 1–8, Jan. 1996.
    [11]E. Muljadi, C. P. Butterfield, and Y.-H. Wan, “Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 831–836, Jul./Aug. 1999.
    [12]F. A. Farret, L. L. Pfitscher and D. P. Bernardon, “An heuristic algorithm for sensorless power maximization applied to small asynchronous wind turbo generators”, Proc. IEEE International Symposium, vol. 1, No. 4-8, pp. 179-184, Dec 2000.
    [13]J. Chen, C. V. Nayar, and L. Xu, “Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3802–3809, Sep. 2000.
    [14]J. Park, The Wind Power Book, Cheshire Books, 1981.
    [15]K. J. Binnsand and D. W. Shimmin, “Relationship between rated torque and size of permanent magnet machines,” Proc. IEE—Electr. Power Appl., vol. 143, no. 6, pp. 417–422, Nov. 1996.
    [16]L. Soderlund and J.-T. Eriksson, “A permanent-magnet generator for wind power applications,” IEEE Trans. Magn., vol. 32, no. 4, pp. 2389–2392, Jul. 1996.
    [17]M. R. Dubois, H. Polinder, and J. A. Ferreira, “Comparison of generator topologies for direct-drive wind turbines,” Proc. Int. Conf. Electrical Machines (ICEM), Manchester, U.K., 1992, pp. 761–765.
    [18]Q. Wang and L. Chang, “An independent maximum power extraction strategy for wind energy conversion systems”, Proc. IEEE Electrical and Computer Engineering, pp. 1142-1147, May 1999.
    [19]R. Datta and V. T. Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system” , IEEE Trans. Energy Convers., vol. 18,No.1, pp.163-168, Mar. 2003.
    [20]R. Bedard, M. Previsic, O. Siddiqui, G. Hagerman, and M. Robinson, “Survey and Characterization Tidal In Stream Energy Conversion (TISEC) Devices,” EPRI Final Report,EPRI-TP-004 NA, Nov. 2005.
    [21]S. Huang, J. Luo, F. Leonardi, and T. Lipo, “A comparison of power density for axial flux machines based on general purpose sizing equations,” IEEE Trans. Energy Convers., vol. 14, no. 2, pp. 185–191, Jun. 1999.
    [22]T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, H. Sekine, “Output power leveling of wind turbine generator for all operating regions by pitch angle control,”, IEEE Trans. Energy Convers., vol. 21, Issue 2, pp. 467-475, Jun. 2006.
    [23]T. Nakamura, S. Morimoto, M. Sanada, Y. Takeda, “Optimum control of IPMSG for wind generation system”, Proc. IEEE Power 90th conversion, vol. 3, No. 2-5, pp. 1435-1440, Apr. 2002.
    [24]T. J. E. Miller, Brushless Permanent Magnet and Reluctance Motor Drive. New York:Oxford University Press, 1989.
    [25]W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis, and I. Batarseh “DSP-based multiple peak power tracking for expandable power system”, IEEE Appl. Power Electr., Vol. 1, No. 9-13, pp. 525-530, Feb.2003.
    [26]Y. Chen; P. Pillay, A. Khan, “PM wind generator topologies”, , IEEE Trans. Ind. Appl., vol. 41, Issue 6, pp. 1619 – 1626, Nov.-Dec. 2005
    [27]周明昌,變結構無刷直流馬達控制在電動車之應用,國立成功大學機械系碩士論文,2003
    [28]陳雙穩,永磁無刷馬達之繞線結構對性能影響之研究,國立成功大學機械工程學系碩士論文,2001。
    [29]張琛,直流無刷電動機原理及應用。北京:機械工業出版社,1999。
    [30]茆尚勳,直驅式跑步機用直流無刷馬達之設計,國立成功大學機械工程學系碩士論文,2002。
    [31]許裕昇,新型推進器馬達之磁路分析與設計,國立成功大學系統及船舶機電工程學系碩士論文,2002。
    [32]鍾珍,國內海洋能利用規劃現況,太陽能及新能源學刊,第八卷第二期,2003。
    [33]台灣電力公司,台灣東部黑潮發電應用調查規劃,台灣電力公司技術報告,1999。
    [34]工業技術研究院,我國海域能源高潛能區之評估及利用,經濟部能源科技研究報告-95年度執行報告,215 頁,2007。
    [35]工業技術研究院,我國海域能源蘊藏量分析技術之建立及開發方向評估,經濟部能源科技研究報告-94 年度執行報告,135 頁2006。
    [36]江青瓚、黃厚生,海流發電位址匹配與發電量模擬之研究, 國科會計畫NSC95-2623-7-231-001-ET,2006。
    [37]盧展南,以海流發電提高再生能源利用之先期設計與驗證,國科會計畫NSC 95-2218-E-110-008-,2008
    [38]蔡逸峰,小型風力發電機葉片設計,馬達電子報,第229 期 May 16, 2007
    [39]Solar Powered Electric Vehicles,
    http://www.tip.csiro.au/Machines/success/sc.html
    [40]國家海洋研究中心
    http://www.ncor.ntu.edu.tw
    [41]中央氣象局海象測報中心
    http://marine.cwb.gov.tw/

    下載圖示 校內:2009-09-11公開
    校外:2009-09-11公開
    QR CODE