簡易檢索 / 詳目顯示

研究生: 趙宣安
Chao, Hsuan-An
論文名稱: 在軟體定義無線電實驗平台實現並評估分散式合作自動重複要求協定之效能
Implementing and Evaluating Distributed Cooperative ARQ Protocols in Software-Defined Radio Testbed
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 149
中文關鍵詞: 合作式自動重複要求協定通道資訊同步分散型
外文關鍵詞: Cooperative ARQ, CSI, synchronization, distributed
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合作自動重複要求協定是最近被提出來的技術,目的是為了達到更可靠的
    傳輸,它在接收端有錯誤時,藉由要求傳送端和中繼站重傳資料封包來延伸了傳
    統自動重複要求協定。然而,在大部分存在的研究當中,合作自動重複要求協定
    都被建立在理論上的分析和電腦模擬。通常,在模擬時會有很多不合理的假設。
    像是,接收端有著完美的通道資訊,或著系統是以完美的同步去運行,等等。為
    了去評估合作自動重複要求協定的精確效能增益,一個真實使用合作自動重複要
    求協定的實驗平台就很重要。
    在我們的論文中,以分散式系統的模式實現了四個自動重複要求協定,分別
    是暫停並等待、合作暫停並等待、選擇性重複、合作選擇性重複。以上提到的協
    定,都被建立GNU Radio 和通用軟體無線電外設上,它是一個有前景而且開放
    式的軟體定義無線電平台。我們在軟體和硬體方面闡述了實現的原理。為了評估
    不同的自動重複要求協定的效能,本研究進行了多項且廣泛的實驗,結果顯示了
    雖然合作式通訊可以如預期提升傳輸的可靠度,可達到的增益主要由自動重複要
    求協定主宰,像是選擇性重複在效率上表現的比暫停並等待協定好。

    To improve transmission reliability, the cooperative automatic repeat request (C-ARQ) protocol is a recently proposed technique, which extends the traditional ARQ protocol by requesting either the source or the relay to retransmit the data packet if required. However, most of the existing works are built on theoretical analysis or computer simulations. Commonly, there are some impractical assumptions in simulations. For example, perfect channel state information (CSI) is available at the receiver, perfect synchronization can be achieved, and so on. To evaluate the exact performance gain of C-ARQ schemes, a real testbed for C-ARQ is of timely importance.
    In this work, we implement four ARQ protocols in a distributed manner, including stop and wait (SW), cooperative stop and wait (C-SW), selective repeat (SR), and cooperative selective repeat (C-SR). All the aforementioned protocols are built based on GNU Radio and USRP2, which is a promising open-source software-de ned radio system. We elaborate the implementation principles, including both software and hardware aspects. Extensive experiments are conducted to evaluate the performance of the considered ARQ schemes. The results show that although cooperative communication can enhance the transmission reliability as expected, the achievable gain is dominated by the characteristics of ARQ protocol, where SR outperforms SW in terms of efficiency.

    Cover Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Certification of Passed Oral Examination . . . . . . . . . . . . . . . . ii Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii English Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background and Related Works. . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Automatic Repeat reQuest (ARQ) . . . . . . . . . . . . . . . . . . . 4 2.2 Why Selective Repeat (SR)? . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Selective Repeat (SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Cooperative Communication . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Software Defined Radio (SDR) . . . . . . . . . . . . . . . . . . . . . . . 8 2.5.1 GNU Radio and USRP2 . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Cooperative ARQ protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Cooperative Stop and Wait Protocol . . . . . . . . . . . . . . . . . . . 14 3.2 Cooperative Selective Repeat Protocol . . . . . . . . . . . . . . . . . 15 3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 BER for BPSK in Rayleigh Fading Channel . . . . . . . . . . . 17 3.3.2 Comparison of BER . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Comparison of Protocol Eciency . . . . . . . . . . . . . . . . . . . 20 3.3.4 Comparison of The Average Number of Transmissions Per Round . . 22 3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 How to build ARQ and C-ARQ by USRP2 . . . . . . . . . . . . 24 4.1 Understanding the benchmark tx and benchmark rx . . . . . 24 4.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Implementation of Stop-and-Wait . . . . . . . . . . . . . . . . . 27 4.3.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.2 Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.3 Preliminary Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.4 Experimental Results in SW . . . . . . . . . . . . . . . . . . . . 31 4.4 Implementation of Cooperative Stop-and-Wait . . . . . . . . . 32 4.4.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.2 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.3 Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4.4 Experimental Results in C-SW . . . . . . . . . . . . . . . . . . 36 4.5 Implementation of Selective Repeat . . . . . . . . . . . . . . . . 37 4.5.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.5.2 Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.5.3 Experimental Results in SR . . . . . . . . . . . . . . . . . . . . 42 4.6 Implementation of Cooperative Selective Repeat . . . . . . 43 4.6.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6.2 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6.3 Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.4 Experimental Results in C-SR . . . . . . . . . . . . . . . . . . 51 5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Experimental Descriptions . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . 61 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    [1] Andrew S. Tanenbaum, Computer Networks, Prentice Hall, 4th edition edition,2002.
    [2] E. Zimmermann, P. Herhold, and G. Fettweis, On the performance of cooperative relaying protocols in wireless networks", European Trans. Commun., vol. 16, no. 5, pp. 5-16, Jan. 2005.
    [3] P. Gupta, I. Cerruti, and A. Fumagalli, Three transmission scheduling policies for a cooperative arq protocol in radio networks", in Proc. Wireless Networking
    Symposium (WNGG), Oct. 2004.
    [4] I. Cerruti, A. Fumagalli, and P. Gupta., Delay models of single-source single-relay cooperative arq protocols in slotted radio networks with poisson frame arrival", IEEE/ACM Trans. Networking, vol. 16, pp. 371-382, Apr. 2008.
    [5] T. Korakis, Z. Tao, S. Makdaand B. Gitelman, and S. Panwar, To serve is to receive implications of cooperation in a real environment", in Proc. Networking 2007, Atlanta, Georgia, USA, May 2007.
    [6] Z. Per, M. Christos, S. Aris, and et al., Experimental investigation of cooperative schemes on a real-time dsp-based testbed", EURASIP Journal on Wireless Communications and Networking, vol. 2009, 2009.
    [7] GNU Radio", http://gnuradio.org/trac/wiki.
    [8] USRP family brochure", http://ettus.com/downloads/er broch trifold v5b.pdf.
    [9] H. Von Malm, Implementing physical and data link control layer on the gnu software-defined radio platform", Bachelor's thesis, University of Paderborn, Computer Networks Group, December 2005.
    [10] G. Bradford, A framework for implementation and evaluation of cooperative diversity in software-defined radio", Ph.D. dissertation, University of Notre Dame, 2008.
    [11] A. Nosratinia, T. E. Hunter, and A. Hedayat, Cooperative communication in wireless networks", IEEE Communications Magazine, vol. 42, pp. 74-80, October 2004.
    [12] M. M. Feghhi and B. Abolhassani, Spectrally e cient cooperative coded schemes for next generation wireless networks", in Proc. Canadian Conference on Electrical and Computer Engineering, May 2009.
    [13] J. Mitola, The software radio architecture", IEEE Communications Magazine, pp. 26-38, May 1995.
    [14] Q. Zhang, J. Jia, and J. Zhang, Cooperative relay to improve diversity in cognitive radio networks", IEEE Communications Magazine, vol. 47, pp. 111-117, February 2009.
    [15] J. Soulie, C++ tutorial", http://www.cplusplus.com/doc/tutorial/.
    [16] Gudio van Rossum, Python tutorial", http://www.python.org/doc/2.5.2/tut/tut.html.
    [17] E. Blossom, Exploring GNU Radio", http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html.
    [18] D. Shen, GNU Radio tutorials", https://radioware.nd.edu/documentation.
    [19] Ettus research", http://www.ettus.com/.
    [20] USRP transceiver daughterboard brochure", https://www.ettus.com/product/category/Daughterboards.
    [21] A. Bletsas and A. Lippman, Implementing cooperative diversity antenna arrays with commodity hardware", IEEE Communication Magazine, pp. 33-40, December 2006.
    [22] A. Bletsas, A. Khisti, D. Reed, and A. Lippman, A simple cooperative diversity method based on network path selection", IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 659-672, 2006.
    [23] J. Alonso Zarate, L. Alonso, and C. Verikoukis, Performance analysis of a persistent relay carrier sensing multiple access protocol", IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 5827-5831, Dec. 2009.
    [24] C. Verikoukis, J. Alonso Zarate, and C. Skiannis, Experimental performance evaluation of a MAC protocol for cooperative ARQ scenarios", in Proc. IEEE GLOBECOM 2009, Honolulu, Hawaii, USA, November 2009.
    [25] J. Zhang, J. Jia, Q. Zhang, and E. M. K. Lo, Implementation and evaluation of cooperative communication schemes in software-de ned radio testbed", in Proc. IEEE INFOCOM, March 2010.
    [26] D. G. Brennan, Linear diversity combing techniques", Proc. of the IEEE, vol. 91, no. 2, Feburary 2003.
    [27] E. Biglieri, J. Proakis, S. Shamai, and D. di Elettronica, Fading channels: Information -theoretic and communications aspects", IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2619-2692, 1998.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE