簡易檢索 / 詳目顯示

研究生: 賴亞咸
Lai, Ya-Hsien
論文名稱: 有限空域下無人飛機與有人飛機協同避讓系統設計
Conflict Detection and Resolution System for Manned / Unmanned Aerial Vehicles Cooperation in a Confined Airspace
指導教授: 林清一
Lin, Chin-E
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 118
中文關鍵詞: 無人飛行載具防撞偵測防撞化解防撞系統路徑預測有人與無人飛行載具合作軌跡預測空域監控
外文關鍵詞: UAV, conflict detection, conflict resolution, CD&R, path prediction, UAV/manned aircraft cooperation, trajectory prediction, Airspace Surveillance
相關次數: 點閱:159下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將設計出一套有人飛機與無人飛機協同在救災區的避讓系統。救災區可被視為一個有限的空域,為了維持在有限空域內飛行,高動態飛行為必須。在這飛行特徵下以往的大型空域直線飛行軌跡預測防撞系統無法準確的計算出飛機的路徑。本論文將利用額外的參數來輔助高動態軌跡預測,提高防撞預測率。以下可以分成軟硬體以及演算法。
    Quasi ADS-B (類廣播式自動回報監視)為一組與各飛機資訊傳輸用途的硬體。此傳輸硬體與前置顯示器合併來輔助飛行員提示飛行碰撞之可能性。避讓系統演算法可分為三部分,第一部分為路徑預測,第二部分為防撞偵測,第三部分為防撞路徑規劃。路徑預測為以下三種類型,STS (近距扇形路徑預測)、STPG(近距參數輔助路徑預測)以及LTPG(長距參數輔助路徑預測),分別套用在有人飛行載具、無人飛行載具以及飛行前避讓規劃。防撞偵測演算法利用路徑規劃(演算法的一部分)加上4D高斯網格來偵測出碰撞可能性。防撞路徑規劃則是利用Theta*路徑規劃法加上GSF(網格縮放比例)輔助來建立安全的閃避路徑。利用這些軟硬體及演算法可以成功的建立一組在有限空域下有人飛行載具與無人飛行載具協同的防撞系統。
    本論文所設計之避讓系統硬體與演算法,利用數值模擬與超輕載具實際飛行數據來做驗證,達成完整有人與無人飛行載具避讓的解決方案。

    In this dissertation, a new conflict detection and resolution (CD&R) system is designed to meet the special specifications of manned and unmanned aircraft rescue and surveillance cooperation in a disaster site. The high dynamic flight trajectory needed to navigate through disaster sites causes traditional CD&R systems unsuitable. The proposed system adopts additional parameters to assist in trajectory predications under high dynamic maneuvers. The proposed CD&R system design can be split into hardware/software and algorithms. A Quasi ADS-B hardware is designed to communicate the necessary data between each aircraft. A front-mounted display is designed to aid pilots to avoid possible conflict visually and audibly. The algorithm of the proposed CD&R system is further split into 3 stages: flight prediction, conflict detection, and conflict resolution. By implanting additional parameters and auxiliary mechanisms into flight predictions, the Short Term Sector (STS) path prediction system is designed for manned aircraft and Short Term Parameter Guided (STPG) path prediction system is designed for unmanned aircraft. Long-Term Parameter Guided (LTPG) path prediction is designed for preflight avoidance planning. 4D Gaussian distributions are generated based on the STS and STPG models to construct the conflict detection probability grid. This grid is further used by the confined Theta* pathfinding algorithm with the aid of Grid Size Factor (GSF) to generate a resolution pathway for the pilot to follow to ensure a conflict-free trajectory. With these designs both hardware and algorithm, a new CD&R system suitable for cooperation between manned and unmanned aircraft in a confined airspace is shown. Theoretical formulations and system implementation are presented with simulations and real flight tests. The proposed Quasi ADS-B technique for CD&R is strongly verified in a complete solution.

    1 Introduction 1 1.1 Overview 1 1.2 Research Background 2 1.2.1 Development of Unmanned Aerial Vehicles (UAV) 2 1.2.2 Conflict Detection and Resolution (CD&R) 3 1.3 Motivation 5 1.3.1 Research Motives 5 1.3.2 Comparison on Different CD&R Systems 6 1.4 Problem Statement 7 1.5 Significance of this Study 8 1.6 Scope and Delimitation 8 1.7 Thesis Outline 9 2 Literature Review on CD&R Systems 11 2.1 Active / Passive SSA Systems 11 2.2 Sense and Detection 13 2.2.1 Radar 13 2.2.2 Visual Sensor 13 2.2.3 ADS-B 14 2.2.4 Cooperative data sharing 14 2.3 State Propagation 15 2.3.1 Nominal Projection 15 2.3.2 Worst-Case Projection 15 2.3.3 Probability Projection 16 2.4 State Dimensions 16 2.5 Conflict Detection 17 2.5.1 Trajectory Calculation and Distance Estimation 17 2.5.2 Worst-Case Trajectory 17 2.5.3 Probability Trajectory 18 2.5.4 Act as Seen 18 2.6 Conflict Resolution 19 2.6.1 Prescribed 19 2.6.2 Geometric 19 2.6.3 Optimized 20 2.6.4 Force Field 20 2.6.5 Bearing angle based 21 2.6.6 Probability Grid Path Finding 21 2.7 Resolution Maneuvers 22 2.8 Multiple conflicts 22 2.9 Advantages of the proposed algorithm over existing systems 23 CHAPTER III 25 3 CD&R Algorithm Design 25 3.1 Algorithm Overview 25 3.2 Path Prediction 26 3.2.1 Short-Term Sector (STS) prediction model 29 3.2.2 Short-term Parameter Guided (STPG) prediction model 32 3.2.3 Long-Term Parameter Guided (LTPG) prediction model 36 3.2.4 Prediction Correction Parameter (PCP) Model 37 3.3 Conflict Detection 39 3.3.1 Probability Grid 39 3.3.2 4D sector Gaussian distribution CD&R model 41 3.3.3 4D parameter Gaussian distribution CD&R model 42 3.3.4 Resolution maneuver compensation 47 3.4 Conflict Resolution 48 3.4.1 Conflict Region and Grid Size Factor 49 3.4.2 Confined Theta * Path Planning 50 3.4.3 New Path Conflict Verification 55 3.4.4 Final Detail Resolution Flight Path Generation 55 CHAPTER IV 57 4 Experimental Setup 57 4.1 Experiment Setup Overview 57 4.1.1 Manned Aircraft 58 4.1.2 UAVs 58 4.1.3 Ground Station 58 4.2 Hardware Architecture 59 4.2.1 STM32 Microchip 60 4.2.2 GPS Ublox 60 4.2.3 Telecommunication 61 4.3 Software 63 4.3.1 Software User Interface 63 4.4 Telecommunication Device Algorithm 65 4.4.1 Transceiver Architecture 65 4.4.2 Time Division Multiple Access Mechanism (TDMA) 72 4.4.3 Compact Position Reporting (CPR) 73 4.5 Transceiver Test 79 CHAPTER V 81 5 Experimental Simulation 81 5.1 Experiment Overview (Algorithm Test) 81 5.1.1 Short-Term Sector (STS) 83 5.1.2 Short-Term Parameter Guided (STPG) 87 5.1.3 Long-Term Parameter Guided (LTPG) 91 5.1.4 Probability Grid + Confined Theta* 94 CHAPTER VI 108 6 Conclusion 108 6.1 Conclusion 108 6.2 Recommended Future Work 110

    [1] S. Chiesa, M. Fioriti, R. Fusaro, “Male UAV and its Systems as a Basis of Future Definitions”, Aircraft Engineering and Aerospace Technology, vol. 88, no.6, pp.771 – 782, 2016. DOI: 10.1108/AEAT-08-2014-0131
    [2] FAA, “Integration of Unmanned Aircraft Systems into the National Airspace System Concept of Operations V2.0”, Internet: http://www.suasnews.com/wp-content/uploads/2012/10/FAA-UAS-Conops-Version-2-0-1.pdf, [2012].
    [3] P. Kopardekar, “Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations”, Internet: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140013436.pdf, [2014].
    [4] J.F. Keane, S. S. Carr, “A brief history of early unmanned aircraft”, Johns Hopkins APL Technical Digest, vol.32, no.3, pp. 558-571, 2013.
    [5] J. E. Olszta, W. A. Olson, “A Comparative Study of Air Carrier and Business Jet TCAS RE Experience”, 29th Digital Avionics System Conference, Salt Lake City, Utah, USA, 2010.
    [6] D. Ebdon, J. Regan, “Sense-and-Avoid Requirement for Remotely Operated Aircraft (ROA)”, OPR: HQ ACC/DR-UAV SMO, 2004.
    [7] A. Viquerat, L. Blackhall, A. Reid, S. Sukkarieh, G. Brooker, “Reactive collision avoidance for unmanned aerial vehicle using Doppler radar”, 6th International Conference on Field and Service Robotics FSR 2007, Chamonix, France, 2007.
    [8] V.C. Koo, et al., “A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring”, Progress in Electromagnetics Research, Vol. 122, pp.245-268, 2012.
    [9] I. Gresham, et al., “Ultra-wideband radar sensors for short-range vehicular applications”, Transactions on Microwave Theory and Techniques, Vol. 52, pp.2105–2122, 2004.
    [10] R. Fontana, E. Richley, A. Marzullo, L. Beard, R. Mulloy, E. Knight, “An ultra-wideband radar for micro air vehicles air vehicle applications”, IEEE Conference on Ultra Wideband Systems and Technologies, Baltimore, MD, USA, 2002.
    [11] H. Choi, Y. Kim, I. Hwang, “Vision-based Reaction Collision Avoidance Algorithm for Unmanned Aerial Vehicle”, AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, 2011.
    [12] J. Saunders, R. Beard, “Reactive vision based obstacle avoidance with camera field of view constraints”, AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 2008.
    [13] S. Saha, A. Natraj, S. Waharte, “A real-time monocular vision-based frontal obstacle detection and avoidance for low cost UAVs in GPS denied environment”, 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, Nov. 2014
    [14] A. McFadyen, A. Durand-Petiteville, L. Mejias, “Decision strategies for automated visual collision avoidance”, 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, May 2014.
    [15] NextGen Implementation Plan 2016, Internet. “https://www.faa.gov/nextgen/media/NextGen_Implementation_Plan-2016.pdf”, [2017].
    [16] J. W. Park, H. D. Oh, M. J. Tahk, “UAV collision avoidance based on geometric approach”, SICE Annual Conference, 2008, Tokyo, Japan, Aug. 2008.
    [17] A. Strobel, M. Schwarzbach, “Cooperative sense and avoid: Implementation in simulation and real world for small unmanned aerial vehicles”, 2014 International Conference in Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, May 2014.
    [18] E. Boivin, A. Desbiens, E. Gagnon, “UAV collision avoidance using cooperative predictive control”, 2008 16th Mediterranean Conference in Control and Automation, Ajaccio, France, June 2008.
    [19] R. Irvine, “A Geometrical Approach to Conflict Probability Estimation”, Air Traffic Control Quarterly, Vol. 10, No. 2, pp. 85-113, 2002.
    [20] C. Haissig, B. Corwin, M. Jackson, “Designing an airborne alerting system for closely spaced parallel approaches”, Proc. AIAA Guidance, Navigation, Control Conference, Portland, OR, Aug. 1999, AIAA-99-3986, pp. 280–287.
    [21] H. von Viebahn, J. Schiefele, “A method for detecting and avoiding flight hazards”, Proc. SPIE Meet. Enhanced Synthetic Vision, Bellingham, WA, Apr. 1997, pp. 50–56.
    [22] A. R. Pritchett, “Pilot Non-conformance to alerting system commands during closely spaced parallel approaches”, D.Sc. dissertation, Dept. Aeronaut. Astronaut., Massachusetts Inst. Technol. (MIT), Cambridge, MA, Dec. 1996.
    [23] Radio Tech. Comm. Aeronaut. (RTCA), “Minimum performance specifications for TCAS airborne equipment”, Washington, DC, Document RTCA/DO-185, Sept. 1983.
    [24] S.-C. Han, H. Bang, “Proportional navigation-based optimal collision avoidance for uavs”, 2nd International Conference on Autonomous Robots and Agents, Palmerston North, New Zealand, 2004.
    [25] J. Van Tooren, M. Heni, A. Knoll, J. Beck, “Development of an autonomous avoidance algorithm for uavs in general airspace”, Proceedings of First CEAS European Air and Space Conference, München, Germany, 2007
    [26] K. D. Bilimoria, H. Q. Lee, Z.-H. Mao, E. Feron, “Comparison of centralized and decentralized conflict resolution strategies for multiple-aircraft problems”, 2000 AIAA Guidance, Navigation, Control Conference, Denver, CO, 2000.
    [27] R. Lachner, “Collision avoidance as a differential game—Real-time approximation of optimal strategies using higher derivatives of the value function”, Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., Orlando, FL, USA, 1997.
    [28] K.-Y. Kim, J.-W. Park, M.-J. Tahk, “UAV collision avoidance using probabilistic method in 3-D”, International Conference in Control, Automation and Systems, Seoul, South Korea, 2007.
    [29] R. Paielli, H. Erzberger, “Conflict probability estimation for free flight”, Journal of Guidance, Control, Dynamics, Vol. 20, No. 3, pp. 588–596, 1997.
    [30] A. Miura, H. Morikawa, M. Mizumachi, “Aircraft Collision Avoidance with Potential Gradient Ground Based Avoidance for Horizontal Maneuvers”, Electronics and Communications in Japan, Part 3, Vol. 78, No. 10, pp. 104-113, 1995.
    [31] D. Franjković, T. Bucak, N. Hoti, “Ground Proximity Warning System - GPWS”, PROMET-Traffic & Transportation, Vol. 11, No.5, pp. 293-301, 1999.
    [32] T.S. Abbott, “Flight test evaluation of the Airborne Information for Lateral Spacing (AILS) concept”, Internet. “https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020043800.pdf “, [2002].
    [33] C. Carbone, U. Ciniglio, F. Corraro, S. Luongo, “A novel 3D geometric algorithm for aircraft autonomous collision avoidance”, 2006 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 2006.
    [34] P. K. Menon, G. D. Sweriduk, B. Sridhar, “Optimal strategies for free-flight air traffic conflict resolution”, Journal of Guidance, Control, and Dynamics, vol.22, no.2, pp.202-211, 1999.
    [35] R. L. Ford, “The conflict resolution process for TCAS II and some simulation results”, Journal of Navigation, vol. 40, no.03, pp.283-303, 1987.
    [36] X. Yang, L. Mejias, T. Bruggemann, “A 3D collision avoidance strategy for uavs in an non-cooperative environment”, Journal of Intelligent Robotic Systems, vol. 70, No. 1-4, pp. 315-327, 2013.
    [37] A. Alexopoulos, A. Kandil, P. Orzechowski, E. Badreddin, “A Comparative Study of Collision Avoidance Techniques for Unmanned Aerial Vehicles”, 2013 IEEE International Conference Systems, Man, and Cybernetics (SMC), Manchester, UK, 2013.
    [38] Z. H. Mao, E. Feron, K. D. Bilimoria, “Stability and Performance of Intersecting Aircraft Flows under Decentralized Conflict Avoidance Rules”, IEEE Transactions on Intelligent Transportation Systems, vol.2, no.2, pp.101-109, 2001.
    [39] G. Fasano et al., “Multi-Sensor-Based Fully Autonomous Non-Cooperative Collision Avoidance System for Unmanned Air Vehicles”, Journal of aerospace computing, information, and communication, vol.5, no.10, pp.338-360, 2008.
    [40] A. Richards, J. How, “Decentralized Model Predictive Control of Cooperating UAVs”, 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, 2004.
    [41] M. Christodoulou, S. Kodaxakis, “Automatic Commercial Aircraft Collision Avoidance in Free Flight: The Three-Dimensional Problem”, IEEE Transactions on Intelligent Transportation Systems, vol. 7, no.2, pp.242-249, 2006.
    [42] C. E. Lin, Y. H. Lai, F. J, Lee, “UAV Collision Avoidance using Sector Recognition in Cooperative Mission to Helicopters”, IEEE/AIAA 2014 Integrated Communications, Navigation, and Surveillance (ICNS) Conference, Herndon, VA, USA, 2014.
    [43] G. Conte, S. Duranti, T. Merz, “Dynamic 3D Path Following for an Autonomous Helicopter”, 5th IFAC Symp. Intelligent Autonomous Vehicles, Oxford, U.K., 2004.
    [44] S. Park, J. Deyst, J. P. How, “Performance and Lyapunov Stavility on a Nonlinear Path-Following Guidance Method”, Journal of Guidance, Control, and Dynamics, vol. 30, no.6, pp.1718-1728, 2007.
    [45] D. Nelson, D. Barber, T. McLain, R. Beard, “Vector Field Path Following for Miniature Air Vehicles”, IEEE Transactions on Robotics, vol.23, no.2, pp. 519-529, 2007.
    [46] A. Ratnoo, P. Sujit, M. Kothari, “Optimal Path Following for High Wind Flights”, IFAC World Congress, Milano, Italy, 2011.
    [47] M. Kothari, I. Postlehwaite, D. Gu, “A Suboptimal Path Planning Algorithm using Rapidly-Exploring Random Tress”, International Journal of Aerospace Innovations, vol. 2, no. 1, pp. 93-104, 2010.
    [48] P. B. Sujit, S. Saripalli, J. B. Sousa, “An Evolution of UAV Path Following Algorithms”,2013 European Control Conference, Zurich, Switzerland, 2013.
    [49] D. McCallie, J. Butts, R. Mills, “Security Analysis of the ADS-B Implementation in the Next Generation Air Transportation System”, International Journal of Critical Infrastructure Protection, vol. 4, no. 2, pp. 78–87, 2011.
    [50] C. P. Lai, Y. J. Ren, C. Lin, “ADS-B Based Collision Avoidance Radar for Unmanned Aerial Vehicles”, International Conference on Microwave Symposium Digest, IEEE MTT’09, Boston, USA, 2009.
    [51] C. E. Lin, C. C. Li, S. F. Tai, C. F. Tsai, S. C. Chiang, T. C. Chen, “Collision Avoidance System for Low Altitude Flights”, Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 41, no. 3, pp. 143-156, 2009.
    [52] Federal Aviation Administration, “Introduction to CD&R II Version 7.1”, U. S. Department of Transportation, 2011.
    [53] A. Marshall, “An Expanded Description of the CPR Algorithm”, RTCA Special Committee 186, Working Group 3, “ADS-B 1090 MOPS”, Rev. B, 1090-WP29-07, 2009.
    [54] C. E. Lin, Y. H. Lai, “Quasi-ADS-B Based UAV Conflict Detection and Resolution to Manned Aircraft”, Journal of Electrical and Computer Engineering, vol. 2015, Article ID 297859, 2015, DOI:10.1155/2015/297859.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE