簡易檢索 / 詳目顯示

研究生: 徐曼嘉
Hsu, Man-Chia
論文名稱: 加入地面輔助資料的GPS/INS定位與定向之模擬研究
A Simulation Study of Map – aided GPS/INS Navigation
指導教授: 尤瑞哲
You, Ruei-Jhe
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 87
中文關鍵詞: 全球定位系統慣性導航系統數值高程模型地圖卡爾曼濾波
外文關鍵詞: GPS, INS, DEM, Map, Kalman Filter
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球定位系統 (GPS) 是目前最受歡迎的導航技術,其最主要的缺點是容易受到衛星訊號不足影響導致無法定位或定位精度差。慣性導航系統(INS)雖然可以提供不間斷的定位與定向結果,誤差卻會隨時間累積。本文提出了一種後處理的演算架構,利用地圖的資訊來改善車載GPS/INS導航結果。當GPS遭遇訊號失鎖時,由地圖提供載具行進的方向,輪速器提供速度,可以估計載具的位置,再由數值高程模型(DEM)提供高程。測試結果顯示此演算架構可以大幅改善衛星訊號失鎖期間的GPS/INS定位與定向結果。

    Currently, the Global Positioning System (GPS) is the most prevalent navigation method. However it suffers from signal blockage in places like urban canyons. The Inertial Navigation System (INS), on the other hand, provides position, orientation, and velocity information without external reference. But errors in INS accumulate over time, especially for low cost MEMS devices. This paper presents a post-processing method to improve GPS/INS navigation results by using auxiliary map information. When GPS temporally loses a signal, location can be estimated based on the map information providing driving direction and odometers, which can be used to compute velocities, as well as a digital elevation model (DEM) giving accurate height information of the estimated location. This paper presents a procedure to handle these three data sources and then integrate them into the Kalman filter algorithm. By approximating locations during signal blockage GPS/INS navigation solutions are significantly improved.

    Abstract ii Acknowledgments iii Contents iv List of Tables vi List of Figures vi 1 Introduction 1 1.1 Background 1 1.2 Problem statement 6 1.3 Related Works 6 1.4 Thesis Outline 10 2 Coordinate Systems 12 2.1 Navigation Frames and Transformation 14 2.2 Map Coordinate System 18 3 INS/GPS Integration Kalman Filter 27 3.1 General Motion Equation 27 3.2 INS Mechanism in Different Frames 29 3.3 Error Dynamics 33 3.4 The implementation of the GPS/INS Kalman Filter: 36 4 Methodology 43 4.1 Methodology of Position Estimation 43 4.2 Auxiliary map information 46 4.3 Odometer Simulation 51 4.4 Accuracy of Position Estimation 52 5 Experiments and Analysis 54 5.1 GPS and IMU Data 54 5.2 GPS Outage Simulation 58 5.3 Driving Speed Variation Test – Case 1 59 5.4 90-degree Turning Test – Case 2 64 5.5 Elevation Changing Test – Case 3 68 5.6 Analysis 72 5.7 Using Field Odometer Data 75 6 Conclusions and Future Work 80 Reference 82

    Agrawal, M., & Konolige, K. (2006, August 20-24). Real-time localization in outdoor environments using stereo vision and inexpensive GPS. Paper presented at the 18th International Conference on Pattern Recognition, ICPR 2006. , Hong Kong.
    Berrabah, S. A., Sahli, H., & Baudoin, Y. (2011). Visual-based simultaneous localization and mapping and global positioning system correction for geo-localization of a mobile robot. Measurement Science and Technology, 22(12), 124003.
    Braasch, M. S. (1996, April 22-26). GPS multipath model validation. Paper presented at the Position Location and Navigation Symposium, 1996., IEEE 1996.
    Brown, R. G., & Hwang, P. Y. C. (1992). Introduction to Random Signals and Applied Kalman Filtering. New York: Wiley
    Cao, M. L., & Cui, P. Y. (2007). A research on SLAM aided INS/GPS navigation system. Paper presented at the Second International Conference on Space Information Technology, Wuhan, China.
    Caruso, M. J. (2000). Applications of magnetic sensors for low cost compass systems. Paper presented at the Position Location and Navigation Symposium, IEEE 2000.
    Carvalho, H., Del Moral, P., Monin, A., & Salut, G. (1997). Optimal nonlinear filtering in GPS/INS integration. Aerospace and Electronic Systems, IEEE Transactions on, 33(3), 835-850.
    Chang, H. W. (2008). CAINS (Version 3.0.2.0): Positioning, Orientation and Integration Navigation Tecnologies Lab.
    Chiang, K. W., Chang, H. W., Li, C. Y., & Huang, Y. W. (2009). An artificial neural network embedded position and orientation determination algorithm for low cost MEMS INS/GPS integrated sensors. Sensors, 9(4), 2586-2610.
    Choi, J. H., Park, Y. W., Kim, J., Choe, T. S., & Song, J. B. (2012). Federated-filter-based unmanned ground vehicle localization using 3D range registration with digital elevation model in outdoor environments. Journal of Field Robotics, 29(2), 298-314.
    Da Silva, J. F. C., Camargo, P. O., & Gallis, R. (2003). Development of a low-cost mobile mapping system: A south American experience. The Photogrammetric Record, 18(101), 5-26.
    Dissanayake, G., Sukkarieh, S., Nebot, E., & Durrant-Whyte, H. (2001). The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. Robotics and Automation, IEEE Transactions on, 17(5), 731-747.
    Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part I. Robotics & Automation Magazine, IEEE, 13(2), 99-110.
    Dussault, C., Courtois, R., Ouellet, J. P., & Huot, J. (2001). Influence of satellite geometry and differential correction on GPS location accuracy. Wildlife Society Bulletin, 29(1), 171-179.
    Elfes, A. (1987). Sonar-based real-world mapping and navigation. Robotics and Automation, IEEE Journal of, 3(3), 249-265.
    Ellum, C., & El-Sheimy, N. (2002). Land-Based Mobile Mapping Systems. Photogrametric Engineering & Remote Sensing, 13-28.
    Fan, C. L. (2008). WGS84_TM2 (Version 1.6): Academia Sinica Computing Center GIS Team. Retrieved from http://www.ascc.sinica.edu.tw/gis/ISTIS/index_b.html
    Gajdamowicz, K., Ohman, D., & Horemuz, M. (2007, May 29-31). Mapping and 3D modelling of urban environment based on Lidar, GPS/IMU and image data. Paper presented at the The 5th International Symposium on Mobile Mapping Technology MMT '07 Padua, Italy.
    Gelb, A. (1974). Applied Optimal Estimation: MIT Press.
    Georgiev, A., & Allen, P. K. (2004). Localization methods for a mobile robot in urban environments. Robotics, IEEE Transactions on, 20(5), 851-864.
    Godha, S. (2006). Performance evaluation of low cost MEMS-based IMU integrated with GPS for land vehicle navigation application. Master of Science Master Thesis, University of Calgary, Calgary, Alberta.
    Godha, S., & Cannon, M. (2005, September 13-16). Integration of DGPS with a low cost MEMS-based inertial measurement unit (IMU) for land vehicle navigation application. Paper presented at the Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA.
    Godha, S., & Cannon, M. (2007). GPS/MEMS INS integrated system for navigation in urban areas. GPS Solutions, 11(3), 193-203.
    Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6-23.
    Heiskanen, W., & Moritz, H. (1967). Physical geodesy. Bulletin Géodésique (1946 - 1975), 86(1), 491-492.
    Henley, A. J. (1990). Terrain aided navigation: current status, techniques for flat terrain and reference data requirements. New York: IEEE Aerospace and Electronic Systems Society.
    Heselton, R. R. (1998). Elevation effects on GPS positional accuracy. Master of Science Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
    Hostetler, L., & Andreas, R. (1983). Nonlinear Kalman filtering techniques for terrain-aided navigation. Automatic Control, IEEE Transactions on, 28(3), 315-323.
    ICAO. (1998). WGS 84 Implementation Manual.
    Jong-Hyuk, K., & Sukkarieh, S. (2003, September 14-19). Airborne simultaneous localisation and map building. Paper presented at the IEEE International Conference on Robotics and Automation, Taipei, Taiwan.
    Kim, J., & Sukkarieh, S. (2004, December 6-8). SLAM aided GPS/INS navigation in GPS denied and unknown environments. Paper presented at the The 2004 International Symposium on GNSS/GPS, Sydney, Australia.
    Li, J., & Fan, X. T. (2011, June 24-26). Height aided GPS navigation using LiDAR DEM. Paper presented at the Geoinformatics, 2011 19th International Conference on, Shanghai, China.
    Li, K., Tan, H. S., & Hedrick, J. K. (2009). Map-aided GPS/INS localization using a low-order constrained Unscented Kalman Filter. Paper presented at the Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, Shanghai, China.
    Li, R. (2010). Mobile mapping: An emerging technology for spatial data acquisition. In M. Dodge, R. Kitchin & C. Perkins (Eds.), The Map Reader (pp. 170-177). Cornwall, UK: Wiley.
    Li, Y., Mumford, P., & Rizos, C. (2008). Seamless navigation through GPS outages–a low-cost GPS/INS solution. Inside GNSS, July/August, 3(5), 39-45.
    Mezentsev, O., Lu, Y., Lachapelle, G., & Klukas, R. (2002, September 24-27). Vehicular navigation in urban canyons using a high sensitivity GPS receiver augmented with a low cost rate gyro. Paper presented at the Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR.
    Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. Paper presented at the In Proceedings of the AAAI National Conference on Artificial
    Ndjeng, A., Gruyer, D., Glaser, S., & Lambert, A. (2011). Low cost IMU-odometer-GPS ego localization for unusual maneuvers. Information Fusion, 12(4), 264-274.
    Niu, X., & El-Sheimy, N. (2005). The development of a low-cost MEMS IMU/GPS navigation system for land vehicles using auxiliary velocity updates in the body frame. Paper presented at the Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA.
    Novak, K., & Bossler, J. (1995). Development and application of the highway mapping system of Ohio State University. The Photogrammetric Record, 15(85), 123-134.
    Ptasinski, P., Cecelja, F., & Balachandran, W. (2002). Altitude aiding for GPS systems using elevation map datasets. The Journal of Navigation, 55(03), 451-462.
    Quddus, M. A., Noland, R. B., & Ochieng, W. Y. (2005). Validation of map matching algorithms using high precision positioning with GPS. Journal of Navigation, 58(02), 257-271.
    Rakha, H., & Van Aerde, M. (1995). Accuracy of vehicle-probe estimates of link-travel time and instantaneous speed. Paper presented at the Intelligent Transportation: Serving the User Through Deployment. Proceedings of the 1995 Annual Meeting of ITS America., Washington, D.C.
    Schwarz Klaus, P., & El-Sheimy, N. (2004). Mobile mapping systems - State of the art and future trends. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 35, 759-768.
    Seeber, G. (2003). Satellite Geodesy: Walter de Gruyter.
    Seong-Baek, K., Seung-Yong, L., Tae-Hyun, H., & Kyoung-Ho, C. (2004, September 26-29). An advanced approach for navigation and image sensor integration for land vehicle navigation. Paper presented at the Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, Los Angeles CA.
    Shin, E.-H., & El-Sheimy, N. (2001). Accuracy improvement of low cost INS/GPS for land applications. Master of Science Master Thesis, University of Calgary, Calgary, Alberta.
    Skog, I., & Handel, P. (2009). In-car positioning and navigation technologies - A survey. Intelligent Transportation Systems, IEEE Transactions on, 10(1), 4-21.
    Stephen, J. (2000). Development of a multi-sensor GNSS based vehicle navigation system. Master of Science Master Thesis, University of Calgary, Calgary, Alberta.
    Syed, S. (2005). Development of map-aided GPS algorithms for vehicle navigation in urban canyons. Master of Science Master Thesis, University of Calgary, Calgary, Alberta.
    Tena Ruiz, I., de Raucourt, S., Petillot, Y., & Lane, D. M. (2004). Concurrent mapping and localization using sidescan sonar. Oceanic Engineering, IEEE Journal of, 29(2), 442-456.
    Waltz, E. L. (1986). Data Fusion for C3I :A Tutorial: EW Communications, Inc.
    Wendel, J., & Trommer, G. F. (2004). Tightly coupled GPS/INS integration for missile applications. Aerospace Science and Technology, 8(7), 627-634.
    Wuk, K., Gyu-In, J., & JangGyu, L. (2000, March 13-16). Efficient use of digital road map in various positioning for ITS. Paper presented at the Position Location and Navigation Symposium, IEEE 2000, San Diego, CA, USA.
    Xu, Z. K., Li, Y., Rizos, C., & Xu, X. S. (2010). Novel hybrid of LS-SVM and Kalman filter for GPS/INS integration. The Journal of Navigation, 63(02), 289-299.
    Yang, C. J., Gao, Z. Y., & Li, D. S. (2010, March 6-7). Hybrid filter combining with ZUPT for vehicle MINS. Paper presented at the 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, CAR 2010, Wuhan, China.
    Yang, J., Kang, S., & Chon, K. (2005). The map matching algorithm of GPS data with relatively long polling time intervals. Journal of the Eastern Asia Society for Transportation Studies, 6, 2561-2573.
    You, R. J. (2011). Coordinate systems and their transformation for Geomatics and GIS (in Chinese). Tainan, Taiwan: Department of Geomatics, NCKU.
    Zeng, C. L. (1990). Global Positiong System: satellitle navigation and positioning. Remote Sensing (in Chinese), 12, 37-71.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE