簡易檢索 / 詳目顯示

研究生: 黃正雅
Huang, Cheng-Ya
論文名稱: 姿勢-上姿勢作業之神經動作控制
Neuromotor Control of Postural-suprapostural Tasks
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 博士
Doctor
系所名稱: 醫學院 - 健康照護科學研究所
Institute of Allied Health Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 134
中文關鍵詞: 注意力資源事件相關電位精細抓握H反射姿勢平衡
外文關鍵詞: attentional resource, event-related potentials, precision grip, H reflex, postural balance
相關次數: 點閱:84下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 維持站立姿勢需有充分的注意力資源來整合前庭、視覺與本體覺之訊息,而觸覺訊息可藉由提供身體在空間的相對位置來增加站立穩定度,當執行上姿勢作業時,因同時執行上姿勢作業與維持身體穩定,需更多的注意力資源來處理感覺輸入與更新動作策略。本實驗利用手指觸覺與精細動作來探討在不同站立姿勢下,執行感覺或動作形式之上姿勢作業時,其神經控制與姿勢策略的相關性,尤其著重於觸覺方向性影響與姿勢、上姿勢作業間的交互影響。
    實驗一的目的是探討站立姿勢(雙腳站、單腳站)與感覺形式之上姿勢作業(左右向手指輕觸、前後向手指輕觸),對於比目魚肌H反射與身體壓力中心晃動的影響。受試者共執行四項作業,分別是雙腳站立、單腳站立無手指輕觸、單腳站立下手指左右向輕觸、單腳站立下手指前後向輕觸;結果發現相較於雙腳站立,當單腳站立無手指輕觸時,比目魚肌H反射顯著下降,並同時伴隨壓力中心晃動增加;而在單腳站的情況下,H反射與壓力中心晃動強度會因手指輕觸方向而調控,左右向手指輕觸下的H反射會大於前後向手指輕觸下的H反射(H反射:單腳站立下手指左右向輕觸>單腳站立下手指前後向輕觸>單腳站立無手指輕觸),壓力中心晃動則在左右向手指輕觸下較大(壓力中心晃動:單腳站立下手指左右向輕觸<單腳站立下手指前後向輕觸<單腳站立無手指輕觸)。
    實驗二的目的是探討改變姿勢-上姿勢作業困難度下,其姿勢表現與動作形式之上姿勢表現的相互影響。受試者共執行四項姿勢-上姿勢作業,分別是:雙腳站立執行固定目標之大拇指-食指精細抓握、雙腳站立執行變動目標之大拇指-食指精細抓握、單腳站立執行固定目標之大拇指-食指精細抓握、單腳站立執行變動目標之大拇指-食指精細抓握;此外,受試者執行兩項控制組作業,分別是雙腳站立與單腳站立但不執行精細抓握。實驗量測的參數有手指精細抓握的力量誤差、反應時間與身體壓力中心晃動程度。實驗結果顯示:改變姿勢與上姿勢作業困難度對手指精細抓握力量的誤差造成交互影響(固定目標:雙腳站下的誤差<單腳站下的誤差;變動目標:雙腳站下的誤差>單腳站下的誤差),但反應時間不會受作業困難度影響;在姿勢表現方面,在單腳站情況下,執行上姿勢作業減低壓力中心晃動程度,但於雙腳站立情況下,執行上姿勢作業反而增加壓力中心晃動程度,且於固定目標的上姿式作業情況下晃動程度更為顯著(雙腳站:固定目標下的壓力中心晃動>變動目標下的壓力中心晃動)。
    實驗三的目的是探討執行姿勢作業與動作形式之上姿勢作業時,大腦資源分布與資訊處理的情形。作業設計與實驗二相同,除動作表現外,本實驗另外量測大腦產生之事件相關電位與動作相關電位;實驗結果顯示:動作相關電位的發生時間與精細抓握之力量誤差,在改變姿勢與上姿勢作業困難度下有相同的交互影響(固定目標:雙腳站下的誤差、動作相關電位發生時間<單腳站下的誤差動作相關電位發生時間;變動目標:雙腳站下的誤差、動作相關電位發生時間>單腳站下的誤差、動作相關電位發生時間);在事件相關電位上,N1成分受站立姿勢影響,單腳站立下的N1振幅在頂葉區域明顯增加,P2成分受上姿勢作業難度影響,執行變動目標之精細抓握時,右大腦半球頂葉區域的P2振幅下降。
    總結以上研究發現,比目魚肌H反射與身體壓力中心晃動會受觸覺訊息的方向性影響,當觸覺方向與姿勢挑戰同向時,身體晃動會顯著減少且比目魚肌H反射會有回升的情況。此外,姿勢表現與動作形式之上姿勢表現會受作業困難度調控,上姿勢作業的反應時間與大腦的動作事件電位結果皆支持在同時執行動作形式的上姿勢作業與姿勢作業時,大腦處理資源的容量會依作業難度而擴展;本研究證明感覺與動作形式之上姿勢動作皆會影響姿勢作業的表現,高階中樞神經組織會因姿勢與上姿勢作業之相對難度而調整大腦資源分布情形。

    Upright stance requires substantial attentional demands to integrate different forms of sensory information from the vestibular, visual, and proprioceptive systems. Haptic cues could facilitate postural synergy to augment stance stability for provision of body orientation respecting to the environment. When a suprapostural task is superimposed, attentional load multiplies to process extra sensory inputs and to update movement synergies for parallel execution of suprapostural task and stance maintenance at the same time. The purposes of the work were to investigate neural correlates for postural synergies in a dual-tasking, following addition of sensory or motor suprapostural task under the conditions of varying task constraints. The particular interests were directional effect of haptic stabilization and mutual influences of postural-suprapostural tasks.
    For the first study, the effects of stance pattern (bilateral stance vs. unilateral stance) and directional influence of light finger touch (medial-lateral vs. anterior-posterior) in unilateral stance upon the soleus H reflex and center of pressure (CoP) sway were studied. Subjects participated in four postural tasks, including the bilateral stance (BS), the unilateral stance without finger touch (USNT), and with finger touch in the medial-lateral direction (USML) and anterior-posterior direction (USAP). In reference to the BS, the USNT resulted in a significant stance effect on suppression of the soleus H reflex (H/Mmax) associated with enhancement of CoP sway. Among the conditions of unilateral stance, there was a marked directional effect of finger touch on modulation of the H/Mmax. A greater disinhibition of the H/Mmax and a more pronounced reduction in CoP sway in consequence to light touch in the ML direction than in the AP direction was noted (H/Mmax: USML > USAP > USNT; CoP: USML < NSAP < NSNT).
    In the second study, the reciprocal influences of stance pattern (bilateral stance vs. unilateral stance) and thumb-index precision grip task (static target vs. dynamic target) on postural-suprapostural tasks by manipulating task-load were studied. Subjects participated in four postural-suprapostural tasks, including static/dynamic force-matching in bilateral/unilateral stance (BS_static; US_static; BS_dynamic; US_dynamic), and two control tasks in bilateral and unilateral stances without a finger task. The normalized force error (NFE), reaction time (RT) of the finger tasks, and normalized change in center of pressure sway (ΔNCoP) were measured. For suprapostural performance, a significant interaction effect between postural and suprapostural tasks on NFE was noted (static: BS < US; dynamic: BS > US) without RT difference. For postural performance, negative ΔNCoP during unilateral stance indicated a reduction in postural sway due to added force-matching. In contrast, addition of force-matching increased postural sway during bilateral stance, but sway decreased as task-load of suprapostural task increased (BS_dynamic < BS_static).
    With similar design as the second study, the third study focused on investigating interplay and resource allocation for a postural-suprapostural task with a motor suprapostural goal. On top of behavioral data, event-related potentials (ERPs) and movement-related potential (MRP) were also included in the analysis. The results showed analogue interaction effects on precision of force-matching and MRP onset depending on the suprapostural or postural tasks applied (matching error & latency of MRP onset: BS_static < US_static; BS_dynamic > US_dynamic), which was assumed to prepare for optimizing suprapostural task in various stance dynamics. From the results of ERPs, N1 component was subject to stance effect with a greater amplitude around parietal cortex across both unilateral stance conditions (N1: US > BS) associated with decreased postural sway. In contrast, P2 was differentially modulated by force-matching version with smaller amplitude over the most right parietal cortex for dynamic force-matching (P2: static > dynamic).
    In summary, haptic modulation on the soleus H reflex and the degree of postural sway was directionally dependent. When finger touch was provided in line with prevailing postural threat, postural sway reduced together with disinhibition of the soleus H reflex. Next, performance of postural and suprapostural tasks could be differently modulated by task-load increment. MRP and RT results supported adaptive expansion of resource capacity for postural-suprapostural tasking with a motor suprapostural goal. Higher cortical structures must involve with flexible resource allocation, according to relative importance of postural and suprapostural tasks.

    Table of Contents Abstract I Abstract in Chinese V Acknowledgement VIII Table of Contents IX List of Tables XI List of Figures XII CHAPTER 1. 1 INTRODUCTION 1.1 Overview of postural-suprapostural control 1 1.1.1 The effect of cutaneous inputs on postural performance 2 1.1.2 The interacting effects of postural and cognitive suprapostural task 3 1.2 Present hypotheses of postural-suprapostural control 4 1.3 Limitations of concurrent hypotheses for postural-suprapostural control 6 1.3.1 Overreaching survey based on posture-cognition setting 6 1.3.2 Lacking sufficient neural correlates for motor synergies during postural-suprapostural multi-tasking 7 1.4 The specific aims of the study 9 CHAPTER 2. 11 MODULATION OF SOLEUS H REFLEX DUE TO STANCE PATTERN AND HAPTIC STABILIZATION OF POSTURE 2.1 Introduction 11 2.2 Methods 13 2.3 Results 18 2.4 Discussion 20 CHAPTER 3. 26 RECIPROCAL INFLUENCES ON PERFORMANCE OF A POSTURAL-SUPRAPOSTURAL TASK BY MANIPULATING THE LEVEL OF TASK LOAD 3.1 Introduction 26 3.2 Methods 29 3.3 Results 36 3.4 Discussion 38 CHAPTER 4. 42 CONCURRENT POSTURAL AND SUPRAPOSTURAL MOTOR SYNERGIES WITH DIFFERENT TASK LOADS: BEHAVIORAL AND NEURAL CORRELATES 4.1 Introduction 42 4.2 Methods 46 4.3 Results 53 4.4 Discussion 58 CHAPTER 5. 66 CONCLUSION AND FUTURE STUDIES 5.1 Conclusion 66 5.2 Future studies 67 REFERENCES 69 Curriculum Vitae .117 List of Tables Table 1 87 The correlation between the amounts of change in H/Mmax and CoP sway due to different experimental conditions. (a) stance effect; (b) touch effect Table 2 88 Means and standard deviations of the Mmax, Ms, Soleus RMS and TA RMS of the four stance conditions. Table 3. 89 Behavior results (reaction time, normalized amplitude of postural sway, and normalized sway regularity) of the four postural-suprapostural conditions. List of Figures Figure 1 90 Diagram of the experimental arrangement to record the soleus H reflex and postural sway. Figure 2. 91 Mean and standard error of H/Mmax of the soleus muscle in the four stance conditions. Figure 3 92 Sample recordings of the H reflex for a typical subject. Figure 4. 94 Mean and standard error of RMS of CoP amplitude in the four stance conditions. Figure 5. 95 Sample recordings of the CoP sway for a typical subject. Figure 6. 96 Diagram of experimental setup and recordings of physiological data for precision grip force, EMG of the first dorsal interosseous (FDI), and postural sway. Figure 7. 97 Sample recordings of the target force and exerted force from a typical subject in two different suprapostural tasks. Figure 8. 98 Mean and standard error of normalized force error (NFE) in four different postural-suprapostural conditions. Figure 9. 99 Sample recordings of CoP trajectory for four postural-suprapostural tasks and two control conditions from a typical subject. Figure 10. 100 The postural task performance of four postural-suprapostural tasks. Figure 11. 102 (a) A schematic illustration of the auditory stimulus paradigm of the postural-suprapostural tasks. (b) Diagram of experimental setup and recordings of physiological data. Figure 12. 104 Sample recordings of the target force and exerted force impulses in two different suprapostural tasks. Figure 13. 106 An example trial shows all physiological recordings for static force-matching during bilateral stance. Figure 14. 108 The contrast of mean and standard error of normalized force error (NFE) among the four postural-suprapostural tasks in this study. Figure 15. 109 (a) Scalp-recorded event-related potentials related to the execution of static force-matching in bilateral stance condition (BS_static). (b) Grand average waveforms from BS_static of the FC3 electrode recorded from 14 subjects. Figure 16. 111 Grand average event-related potentials evoked in the ongoing force-matching for four postural-suprapostural versions in the time window between 50 ms preceding and 300 ms following executive tone. Figure 17. 112 Topological plots showing significant postural effect and suprapostural effect on ERP amplitude. Figure 18. 114 The contrast of mean and standard error of latency of movement-related potential onset among the four postural-suprapostural tasks in this study. Figure 19. 115 Topographic mapping of the MRP in all subjects.

    1. Adkin AL, Campbell AD, Chua R, Carpenter MG. The influence of postural threat on the cortical response to unpredictable and predictable postural perturbations. Neurosci Lett. 2008; 435(2):120-5.
    2. Andersen GJ and Dyre BP. Spatial orientation from optic flow in the central visual field. Percept Psychophys 1989; 45(5):453-458.
    3. Begliomini C, Nelini C, Caria A, Grodd W, Castiello U. Cortical activations in humans grasp-related areas depend on hand used and handedness PLoS ONE 2008; 3(10): e3388
    4. Bisiacchi PS, Schiff S, Ciccola A, Kliegel M. The role of dual-task and task-switch in prospective memory: behavioural data and neural correlates. Neuropsychologia 2009; 47(5):1362-1373.
    5. Brooke JD, Cheng J, Misiaszek JE, Lafferty K. Amplitude modulation of the soleus H reflex in the human during active and passive stepping movements. J Neurophysiol 1995; 73(1):102-111.
    6. Brown LA, Gage WH, Polych MA, Polych MA, Sleik RJ, Winder TR. Central set influences on gait: age-dependent effects of postural threat. Exp Brain Res 2002; 145(3): 286-296.
    7. Cavanaugh JT, Mercer VS, Stergiou N. Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: a methodological report. Neuroeng Rehabil 2007; 4: 42.
    8. Chalmers GR, Knutzen KM. Soleus H-reflex gain in healthy elderly and young adults when lying, standing, and balancing. J Gerontol A Biol Sci Med Sci 2002; 57(8): B321-329.
    9. Chiang H, Slobounov SM, Ray W. Practice-related modulations of force enslaving and cortical activity as revealed by EEG. Clin Neurophysiol 2004; 115(5):1033-1043.
    10. Clapp S, Wing AM. Light touch contribution to balance in normal bipedal stance. Exp Brain Res 1999; 125(4):521-524.
    11. Corradi-Dell'Acqua C, Hesse MD, Rumiati RI, Fink GR. Where is a nose with respect to a foot? The left posterior parietal cortex processes spatial relationships among body parts. Cereb Cortex 2008; 18(12):2879-2890.
    12. Crone C, Hultborn H, Mazieres L, Morin C, Nielsen J, Pierrot-Deseilligny E. Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: a study in man and the cat. Exp Brain Res 1990; 81(1):35-45.
    13. Cui R, MacKinnon CD. The effect of temporal accuracy constraints on movement-related potentials. Exp Brain Res 2009; 194(3):477-488.
    14. Dafotakis M, Sparing R, Eickhoff SB, Fink GR, Nowak DA. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force. Brain Res 2008; 1228:73-80.
    15. Dault MC, Geurts AC, Mulder TW, Duysens J. Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations. Gait Posture 2001; 14(3):248-255.
    16. Dijkstra TM, Schöner G, Gielen CC: Temporal stability of the action-perception cycle for postural control in a moving visual environment. Exp Brain Res 1994; 97(3): 477- 486.
    17. Donker SF, Roerdink M, Greven AJ, Beek PJ. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 2007; 181(1): 1-11.
    18. Edin F, Klingberg T, Stödberg T, Tegnér J. Fronto-parietal connection asymmetry regulates working memory distractibility. J Integr Neurosci 2007; 6(4):567-596.
    19. Era P, Heikkinen E. Postural sway during standing and unexpected disturbance of balance in random samples of men of different ages. J Gerontol 1985; 40(3):287-295.
    20. Goulart F, Valls-Sole J, Alvarez R. Posture-related changes of soleus H-reflex excitability. Muscle Nerve 2000; 23(6):925-932.
    21. Gribble PA, Hertel J. Effect of hip and ankle muscle fatigue on unipedal postural control. J Electromyogr Kinesiol 2004; 14(6):641-646.
    22. Gribble PA, Hertel J. Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil 2004; 85(4):589-592.
    23. Hagen GF, Gatherwright JR, Lopez BA, Polich J. P3a from visual stimuli: task difficulty effects. Int J Psychophysiol 2006; 59(1):8-14.
    24. Hamzei F, Dettmers C, Rijntjes M, Glauche V, Kiebel S, Weber B, Weiller C. Visuomotor control within a distributed parieto-frontal network. Exp Brain Res 2002; 146(3):273-281.
    25. Hayashi R, Tako K, Tokuda T, Yanagisawa N. Comparison of amplitude of human soleus H-reflex during sitting and standing. Neurosci Res 1992; 13(3) 227-233.
    26. Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science 1973; 182(108):177-180.
    27. Hillyard SA, Anllo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 1998; 95(3):781-787.
    28. Holden M, Ventura J, Lackner JR. Stabilization of posture by precision contact of the index finger. J Vestib Res 1994; 4(4):285-301.
    29. Hopf JM, Vogel E, Woodman G, Heinze HJ, Luck SJ. Localizing visual discrimination processes in time and space. J Neurophysiol 2002; 88(4):2088-2095.
    30. Huang CY, Cherng RJ, Yang ZR, Chen YT, Hwang IS. Modulation of soleus H reflex due to stance pattern and haptic stabilization of posture. J Electromyogr Kinesiol 2009; 19(3):492-499.
    31. Huang CY, Cherng RJ, Hwang IS. Reciprocal influence on performances of a postural-suprapostural task by manipulating the level of task load. J Electromyogr Kinesiol 2009 (in press).
    32. Hunter MC, Hoffman MA. Postural control: visual and cognitive manipulations. Gait Posture 2001; 13(1):41-48.
    33. Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull 2006; 69(3):294-305.
    34. Hwang IS, Lin CF, Tung LC, Wang CH. Responsiveness of the H reflex to loading and posture in patients following stroke. J Electromyogr Kinesiol 2004; 14(6): 653-659.
    35. Hwang IS, Huang CT, Cherng RJ, Huang CC. Postural fluctuations during pointing from a unilateral or bilateral stance. Hum Mov Sci 2006; 25(2):275-291.
    36. Hwang IS, Tsai IY. Inter-trial variation of soleus H reflex in humans: implication for supraspinal influence. Electromyogr Clin Neurophysiol 2002; 42(8):507-512.
    37. Ishida M. Effect of allocating attention to aversive events on cardiovascular responses and event-related potentials in a dual-task paradigm. Int J Psychophysiol 2006; 62 (1):93-102
    38. Ishihara M, Imanaka K. Motor preparation of manual aiming at a visual target manipulated in size, luminance contrast, and location. Perception 2007; 36(9): 1375-1390.
    39. Jankelowitz SK, Colebatch JG. Movement-related potentials associated with self-paced, cued and imagined arm movements. Exp Brain Res 2002; 147(1): 98-107.
    40. Jeka JJ. Light touch contact as a balance aid. Phys Ther 1997; 77(5):476-487.
    41. Jeka JJ, Lackner JR. Fingertip contact influences human postural control. Exp Brain Res 1994; 100(3):495-502.
    42. Jeka JJ, Lackner JR. The role of haptic cues from rough and slippery surfaces in human postural control. Exp Brain Res 1995; 103(2):267-276.
    43. Johannsen P, Christensen LO, Sinkjaer T, Nielsen JB. Cerebral functional anatomy of voluntary contractions of ankle muscles in man. J Physiol 2001; 535(Pt 2):397-406.
    44. Kagamihara Y, Hayashi A, Masakado Y, Kouno Y. Long-loop reflex from arm afferents to remote muscles in normal man. Exp Brain Res 2003; 151(1):136-144.
    45. Kahneman D. Attention and Effort. Englewood Cliffs: Prentice-Hall, 1973.
    46. Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K. The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int J Psychophysiol 2007; 65(2):114-121.
    47. Kanekar N, Santos MJ, Aruin AS. Anticipatory postural control following fatigue of postural and focal muscles. Clin Neurophysiol 2008; 119(10): 2304-2313.
    48. Katz R, Meunier S, Pierrot-Deseilligny E. Changes in presynaptic inhibition of Ia fibres in man while standing. Brain 1988; 111(2):417-437.
    49. Kida T, Nishihira Y, Hatta A, Wasaka T, Tazoe T, Sakajiri Y, Nakata H, Kaneda T, Kuroiwa K, Akiyama S, Sakamoto M, Kamijo K, Higashiura T. Resource allocation and somatosensory P300 amplitude during dual task: effects of tracking speed and predictability of tracking direction. Clin Neurophysiol 2004; 115(11):2616-2628.
    50. Kimura M, Katayama J, Murohashi H. Underlying mechanisms of the P3a task-difficulty effect. Psychophysiology 2008; 45(5):731-41.
    51. Klein P, Mattys S, Rooze M. Moment arm length variations of selected muscles acting on talocrural and subtalar joints during movement: an in vitro study. J Biomech 1996; 29(1):21-30.
    52. Klemmer ET. Time uncertainty in simple reaction time. J Exp Psychol 1956; 51(3): 179-184.
    53. Kok A. Event-related-potential (ERP) reflections of mental resources: a review and synthesis. Biol Psychol 1997; 45(1-3):19-56.
    54. Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001; 38(3):557-577.
    55. Kotchoubey B. Event-related potentials, cognition, and behavior: a biological approach. Neurosci Biobehav Rev 2006; 30(1):42-65.
    56. Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L. Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalogr Clin Neurophysiol 1990; 75(5):410-418.
    57. Lackner JR, Rabin E, DiZio P. Stabilization of posture by precision touch of the index finger with rigid and flexible filaments. Exp Brain Res 2001; 139(4):454-464.
    58. Lajoie Y, Teasdale N, Bard C, Fleury M. Attentional demands for static and dynamic equilibrium. Exp Brain Res 1993; 97(1):139-144.
    59. Lang W, Obrig H, Lindinger G, Cheyne D, Deecke L. Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 1990; 79(3):504-514.
    60. Lang W, Zilch O, Koska C, Lindinger G, Deecke L. Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Exp Brain Res 1989; 74(1):99-104.
    61. Lehle C, Hübner R. Strategic capacity sharing between two tasks: evidence from tasks with the same and with different task sets. Psychol Res 2009; 73(5):707-726.
    62. Lehle C, Steinhauser M, Hübner R. Serial or parallel processing in dual tasks: what is more effortful? Psychophysiology 2009; 46(3):502-509.
    63. Linden DE, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R, Singer W, Munk MH. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage 2003; 20(3):1518-1530.
    64. Llewellyn M, Yang JF, Prochazka A. Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking. Exp Brain Res 1990; 83(1):22-28.
    65. Low KA, Leaver EE, Kramer AF, Fabiani M, Gratton G. Share or compete? Load-dependent recruitment of prefrontal cortex during dual-task performance. Psychophysiology 2009; 46: 1-11.
    66. Luck SJ, Hillyard SA. Electrophysiological correlates of feature analysis during visual search. Psychophysiology 1994; 31(3):291-308.
    67. Lundin TM, Feuerbach JW, Grabiner MD. Effect of plantar flexor and dorsiflexor fatigue on unilateral postural control. J Appl Biomech 1993; 9(3):191- 201.
    68. Maki BE, McIlroy WE. Influence of arousal and attention on the control of postural sway. J Vestib Res 1996; 6(1):53-59.
    69. McElree B, Carrasco M. The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches. J Exp Psychol Hum Percept Perform 1999; 25(6):1517-1539.
    70. McKenzie NC, Brown LA. Obstacle negotiation kinematics: age-dependent effects of postural threat. Gait Posture 2004; 19(3): 226-234.
    71. McNevin NH, Wulf G. Attentional focus on supra-postural tasks affects postural control. Hum Mov Sci 2002; 21(2):187-202.
    72. Meinck HM, Piesiur-Strehlow B. Reflexes evoked in leg muscles from arm afferents: a propriospinal pathway in man? Exp Brain Res 1981; 43(1):78-86.
    73. Michie PT, Solowij N, Crawford JM, Glue LC. The effects of between-source discriminability on attended and unattended auditory ERPs. Psychophysiology 1993; 30(2):205-220.
    74. Mitra S. Adaptive utilization of optical variables during postural and suprapostural dual-task performance: comment on Stoffregen, Smart, Bardy, and Pagulayan (1999). J Exp Psychol Hum Percept Perform 2004; 30(1):28-38.
    75. Mitra S. Postural costs of suprapostural task load. Hum Mov Sci 2003; 22(3): 253-270.
    76. Mitra S, Fraizer EV. Effects of explicit sway-minimization on postural-suprapostural dual-task performance. Hum Mov Sci 2004; 23(1):1-20.
    77. Mochizuki G, Sibley KM, Cheung HJ, McIlroy WE. Cortical activity prior to predictable postural instability: is there a difference between self-initiated and externally-initiated perturbations? Brain Res 2009; 1279:29-36.
    78. Müller ML, Redfern MS, Jennings JR. Postural prioritization defines the interaction between a reaction time task and postural perturbations. Exp Brain Res 2007; 183(4): 447-456.
    79. Näätänen R. Attention and brain function. Lawrence Erlbaum Associates, Inc. Hillsdale, New Jersey. 1992.
    80. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987; 24(4):375-425.
    81. Näätänen R, Teder W. Attention effects on the auditory event-related potential. Acta Otolaryngol Suppl 1991; 491:161-166.
    82. Nash AJ, Fernandez M. P300 and allocation of attention in dual-tasks. Int J Psychophysiol 1996; 23(3):171-180.
    83. Nielsen J, Crone C, Hultborn H. H-reflexes are smaller in dancers from The Royal Danish Ballet than in well-trained athletes. Eur J Appl Physiol Occup Physiol 1993; 66(2):116-121.
    84. Osman A, Bashore TR, Coles MG, Donchin E, Meyer DE. On the transmission of partial information: inferences from movement-related brain potentials. J Exp Psychol Hum Percept Perform 1992; 18(1):217-232.
    85. Ouchi Y, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S. Absolute changes in regional cerebral blood flow in association with upright posture in humans: an orthostatic PET study. J Nucl Med 2001; 42(5):707-712.
    86. Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain 1999; 122(Pt 2):329-338.
    87. Pashler H. Processing stages in overlapping tasks: evidence for a central bottleneck. J Exp Psychol Hum Percept Perform 1984; 10(3):358-377.
    88. Pellecchia GL. Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 2003; 18(1): 29-34.
    89. Pérennou DA, Leblond C, Amblard B, Micallef JP, Rouget E, Pélissier J. The polymodal sensory cortex is crucial for controlling lateral postural stability: evidence from stroke patients. Brain Res Bull 2000; 53(3):359-365.
    90. Petersen N, Morita H, Nielsen J. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. J Physiol 1999; 520(2):605- 619.
    91. Perlmutter SI, Maier MA, Fetz EE. Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey. J Neurophysiol 1998; 80(5):2475-2494.
    92. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991; 88(6):2297-2301.
    93. Pontifex MB, Hillman CH. Neuroelectric and behavioral indices of interference control during acute cycling. Clin Neurophysiol 2007; 118(3): 570-580.
    94. Pulvermüller F, Lutzenberger W, Preissl H, Birbaumer N. Motor programming in both hemispheres: an EEG study of the human brain. Neurosci Lett 1995; 190(1):5-8
    95. Rabin E, Bortolami SB, DiZio P, Lackner JR. Haptic stabilization of posture: changes in arm proprioception and cutaneous feedback for different arm orientations. J Neurophysiol 1999; 82(6):3541-3549.
    96. Raglin JS. Anxiety and sport performance. Exerc Sport Sci Rev 1992; 20:243- 274.
    97. Riccio GE, Stoffregen TA. Affordances as constraints on the control of stance. Hum Mov Sci 1988; 7:265-300.
    98. Riley MA, Baker AA, Schmit JM. Inverse relation between postural variability and difficulty of a concurrent short-term memory task. Brain Res Bull 2003; 62(3): 191-195.
    99. Riley MA, Stoffregen TA, Grocki MJ, Turvey MT. Postural stabilization for the control of touch. Hum Mov Sci 1999; 18: 795-817.
    100. Robbins TW. Arousal systems and attentional processes. Biol Psychol 1997; 45(1-3):57-71.
    101. Roland PE, Larsen B, Lassen NA, Skinhøj E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 1980; 43(1):118-136.
    102. Rugg MD, Coles MGH. The ERP and cognitive psychology: Concept issues. In Rugg MD, Coles MGH: Electrophysiology of mind 1995, pp. 27-39. Oxford: Oxford University Press.
    103. Runge CF, Shupert CL, Horak FB, Zajac FE. Ankle and hip postural strategies defined by joint torques. Gait Posture 1999; 10(2):161-170.
    104. Rushworth MF, Johansen-Berg H, Göbel SM, Devlin JT. The left parietal and premotor cortices: motor attention and selection. Neuroimage. 2003; 20 (Suppl 1):S89-100.
    105. Rushworth MF, Nixon PD, Renowden S, Wade DT, Passingham RE. The left parietal cortex and motor attention. Neuropsychologia 1997; 35(9): 1261- 1273.
    106. Schmidt AM, Dolis CM. Something's got to give: the effects of dual-goal difficulty, goal progress, and expectancies on resource allocation. J Appl Psychol 2009; 94(3): 678-691.
    107. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. 4th ed. Champaign: Human Kinetics, 2005
    108. Schröter H, Leuthold H. Motor programming of rapid finger sequences: inferences from movement-related brain potentials. Psychophysiology 2009; 46(2):388-401.
    109. Schubert M, Johannes S, Koch M, Wieringa BM, Dengler R, Munte TF. Differential effects of two motor tasks on ERPs in an auditory classification task: evidence of shared cognitive resources. Neurosci Res. 1998; 30(2):125-134.
    110. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci 1997; 52(4): M232-240.
    111. Sibley KM, Carpenter MG, Perry JC, Frank JS. Effects of postural anxiety on the soleus H-reflex. Hum Mov Sci 2007; 26(1):103-112.
    112. Simonetta M, Clanet M, Rascol O. Bereitschaftspotential in a simple movement or in a motor sequence starting with the same simple movement. Electroenceph Clin Neurophysiol 1991; 81(2):129–134.
    113. Simonsen EB, Dyhre-Poulsen P. Amplitude of the human soleus H reflex during walking and running. J Physiol 1999; 515(3):929-939.
    114. Singhal A, Fowler B. The differential effects of Sternberg short- and long-term memory scanning on the late Nd and P300 in a dual-task paradigm. Brain Res Cogn Brain Res 2004; 21(1):124-132.
    115. Sirevaag EJ, Kramer AF, Coles MG, Donchin E. Resource reciprocity: an event-related brain potentials analysis. Acta Psychol (Amst) 1989; 70(1):77-97.
    116. Siu KC, Woollacott MH. Attentional demands of postural control: the ability to selectively allocate information-processing resources. Gait Posture 2007; 25(1): 121-126.
    117. Slobounov S, Johnston J, Chiang H, Ray W. Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 2002; 113(7):1125-1135.
    118. Slobounov SM, Fukada K, Simon R, Rearick M, Ray W. Neurophysiological and behavioral indices of time pressure effects on visuomotor task performance. Brain Res Cogn Brain Res 2000; 9(3):287-298.
    119. Slobounov SM, Ray WJ. Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Exp Brain Res 1998; 123(4):461-473.
    120. Smith ME, McEvoy LK, Gevins A. Neurophysiological indices of strategy development and skill acquisition. Brain Res Cogn Brain Res 1999; 7(3):389-404.
    121. Staines WR, Brooke JD, Misiaszek JE, McIlroy WE. Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. II. Correlation with rate of stretch of extensor muscles of the leg. Exp Brain Res 1997; 115(1):156-164.
    122. Stein RB, Capaday C. The modulation of human reflexes during functional motor tasks. Trends Neurosci 1988; 11(7):328-332.
    123. Stoffregen TA, Hove P, Bardy BG, Riley M, Bonnet CT. Postural stabilization of perceptual but not cognitive performance. J Mot Behav 2007; 39(2):126-138.
    124. Stoffregen TA, Pagulayan RJ, Bardy BG, Hettinger LJ. Modulating postural control to facilitate visual performance. Hum Mov Sci 2000; 19(2):203-220.
    125. Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Hum Percept Perform 1999; 25(6):1641-1658.
    126. Swan L, Otani H, Loubert PV. Reducing postural sway by manipulating the difficulty levels of a cognitive task and a balance task. Gait Posture 2007; 26(3):470-474.
    127. Tomasi D, Chang L, Caparelli EC, Ernst T. Different activation patterns for working memory load and visual attention load. Brain Res 2007; 1132(1):158-165.
    128. Tombu M, Jolicoeur P. Virtually no evidence for virtually perfect time-sharing. J Exp Psychol Hum Percept Perform 2004; 30(5):795-810.
    129. Trimble MH, Koceja DM. Effect of a reduced base of support in standing and balance training on the soleus H-reflex. Int J Neurosci 2001; 106(1-2):1-20.
    130. Tropp H, Odenrick P. Postural control in single-limb stance. J Orthop Res 1988; 6 (6):833-839.
    131. Vuillerme N, Nougier V. Attentional demand for regulating postural sway: the effect of expertise in gymnastics. Brain Res Bull 2004; 63(2):161-165.
    132. Whyte J. Attention and arousal: basic science aspects. Arch Phys Med Rehabil 1992; 73(10): 940-949.
    133. Wickens CD, Kramer A, Vanasse L, Donchin E. Performance of Concurrent Tasks: A Psychophysiological Analysis of the Reciprocity of Information-Processing Resources. Science 1983; 221(4615):1080-1082.
    134. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol 1998; 80(3):1211-1221.
    135. Winter DA, Patla AE, Ishac M, Gage WH. Motor mechanisms of balance during quiet standing. J Electromyogr Kinesiol 2003; 13(1):49-56.
    136. Woldorff MG, Hillyard SA. Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 1991; 79(3):170-191.
    137. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2001; 16(1):1-14.
    138. Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A 2001; 54(4):1143-1154.
    139. Wulf G, Mercer J, McNevin N, Guadagnoli MA. Reciprocal influences of attentional focus on postural and suprapostural task performance. J Mot Behav 2004; 36(2): 189-199.
    140. Yaggie JA, McGregor SJ. Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Arch Phys Med Rehabil 2002; 83(2):224-228.

    下載圖示 校內:2012-07-31公開
    校外:2012-07-31公開
    QR CODE