簡易檢索 / 詳目顯示

研究生: 楊秀卉
Yang, Siou-Huei
論文名稱: 以化學氣相沉積法成長鈣鈦礦薄膜與鈣鈦礦發光二極體之研究
Research on perovskite films and perovskite light-emitting diodes prepared by chemical vapor deposition
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 化學氣相沉積法結晶性結晶速率鈣鈦礦發光二極體高品質的鈣鈦礦薄膜
外文關鍵詞: chemical vapor deposition, crystallinity, crystallization rate, perovskite light-emitting diode, high-quality perovskite film
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以兩步法成長鈣鈦礦薄膜,先以旋轉塗布法成長溴化鉛(PbBr2)薄膜,再將其以化學氣相沉積法反應鈣鈦礦薄膜。首先,我們控制溫度以成長不同結晶性的PbBr2薄膜,發現以非晶的PbBr2薄膜成長的鈣鈦礦薄膜所製成的元件有較好的亮度及電流效率。接著我們改變化學氣相沉積系統中MABr與氯化膽鹼(CC)的比例,以氯化膽鹼的劑量來控制鈣鈦礦薄膜的結晶速率,添加越多的氯化膽鹼可以使鈣鈦礦結晶速度越快,但若結晶速度太快薄膜會有孔洞產生且表面較粗糙以降低薄膜品質,因此於化學氣相沉積系統中添加550 mg的MABr與206.3 mg的CC成長的鈣鈦礦薄膜所製成的元件表現最佳。另外,發現於化學氣相沉積系統中添加氯化膽鹼可以使氯化膽鹼中的氯離子和MAPbBr3中部份的溴離子進行置換形成MAPbClxBr3-x,使發光波段由536 nm藍移至516 nm。
    最後,我們添加適量的PEA於PbBr2的前驅溶液中以成長出高品質的鈣鈦礦薄膜,並將其作為發光層製備成鈣鈦礦發光二極體元件,亮度由4070 cd/m2大幅提升至20869 cd/m2;電流效率也由1.26 cd/A增加至3.99 cd/A。

    In this study, the perovskite film was grown by two-step process. The lead bromide film was first grown by spin coating, and then the perovskite film was reacted by chemical vapor deposition. First, we controlled the temperature to grow PbBr2 films with different crystallinity. It was found that perovskite light-emitting diode made of a perovskite film grown with an amorphous PbBr2 film have better brightness and current efficiency. Then we changed different ratio of MABr and choline chloride (CC) in the chemical vapor deposition system. It was found that the more choline chloride added, the perovskite film can grow faster. But if the crystallization rate is too fast, the film will have pores and the surface is rough to reduce the film quality. Therefore, perovskite light-emitting diode made by adding 550 mg of MABr and 206.3 mg of CC in the chemical vapor deposition system performed best. In addition, it was found that the addition of choline chloride to the chemical vapor deposition system can replace the chloride ions in choline chloride and some of the bromide ions in MAPbBr3 to form MAPbClxBr3-x, and shift the luminescence band from 536 nm blue to 516 nm. Finally, we added a proper amount of PEA in the PbBr2 precursor solution to grow a high-quality perovskite film, and used it as a light-emitting layer to prepare a perovskite light-emitting diode device, and the brightness was greatly improved from 4070 cd/m2 to 20869 cd/m2; current efficiency also increased from 1.26 cd/A to 3.99 cd/A.

    摘要 I 致謝 IX 目錄 X 圖目錄 XIV 表目錄 XIX 第一章 序論 1 1-1前言 1 1-2研究動機 3 1-3論文大綱 4 第二章 鈣鈦礦發光二極體原理 5 2-1鈣鈦礦發光二極體發展與製程技術 5 2-1-1旋轉塗佈法(Spin-coating Method) 7 2-1-2 氣相沉積法(Vapor Deposition Method) 10 2-1-3 氣相輔助溶液法(Vapor Assisted Solution Process) 11 2-2 鈣鈦礦發光二極體簡介 13 2-3鈣鈦礦發光二極體工作原理 14 2-3-1載子注入(Carrier injection ) 15 2-3-2載子傳輸 16 2-4添加季胺鹽類提升鈣鈦礦發光二極體元件特性 17 2-5添加苯乙胺鈍化鈣鈦礦薄膜表面以提升元件特性 18 第三章 材料介紹與鈣鈦礦發光二極體的製備 19 3-1材料介紹 19 3-1-1 NiO 19 3-1-2甲胺溴化鉛(MAPbBr3) 21 3-2實驗用材料及藥品規格 23 3-3 實驗流程 24 3-4 材料分析及元件量測之機台介紹 33 3-4-1掃描式電子顯微鏡(Scanning Electron Microscope) 33 3-4-2 X光繞射儀(X-ray Diffraction) 34 3-4-3紫外光-可見光光譜儀 (Ultraviolet-Visible Spectroscopy) 35 3-4-4光致發光光譜儀 (Photoluminescence Spectroscopy) 35 3-4-5電流-亮度-電壓量測系統 ( I -L-V) 36 第四章 實驗結果與討論 37 4-1 前言 37 4-2 以不同結晶性的PbBr2/ PbBr2+CC薄膜製成鈣鈦礦薄膜 38 4-2-1探討不同溫度加熱PbBr2 / PbBr2+CC薄膜之光學、形貌、晶體特性 38 4-2-2以不同溫度製備PbBr2+CC薄膜以成長鈣鈦礦薄膜應用於鈣鈦礦發光二極體 42 4-2-3本章小結 45 4-3添加氯化膽鹼對於化學氣相沉積法成長MAPbBr3薄膜的結晶變化 46 4-3-1 PbBr2薄膜於化學氣相沉積系統中與添加不同比例的MABr+CC反應成鈣鈦礦薄膜之光學、形貌、晶體特性 46 4-3-2 PbBr2薄膜於化學氣相沉積系統中與添加不同比例的MABr、CC反應成MAPbBr3薄膜應用於鈣鈦礦發光二極 54 4-3-3 PbBr2+CC薄膜於化學氣相沉積系統中與添加不同比例的MABr+CC反應成鈣鈦礦薄膜之光學、形貌、晶體特性 57 4-3-4 PbBr2+CC薄膜於化學氣相沉積系統中與添加不同比例的MABr、CC反應成鈣鈦礦薄膜應用於鈣鈦礦發光二極 65 4-3-5本章小節 68 4-4 添加苯乙胺於溴化鉛前驅溶液以成長高品質之鈣鈦礦薄膜 69 4-4-1 添加苯乙胺於溴化鉛前驅溶液所成長鈣鈦礦薄膜之光學、形貌、晶體特性 69 4-4-2 添加苯乙胺於溴化鉛前驅溶液成長鈣鈦礦薄膜應用於發光二極體元件 84 4-4-3 本章小節 87 第五章 結論與未來展望 88 5-1結論 88 5-2未來展望 89 參考文獻 90

    [1] 陳隆建, "LED元件與產業概況," 五南圖書出版, 2012.
    [2] H. J. Round, "Light-emitting diodes hit the centenary milestone," World, vol. 19, p. 309, 1907.
    [3] N. Holonyak Jr and S. Bevacqua, "Coherent (visible) light emission from Ga (As1− x P x) junctions," Applied Physics Letters, vol. 1, no. 4, pp. 82-83, 1962.
    [4] L. Zhao and B. P. Rand, "Metal‐Halide Perovskites: Emerging Light‐Emitting Materials," Information Display, vol. 34, no. 6, pp. 18-22, 2018.
    [5] A. Navrotsky and D. J. Weidner, "Perovskite: a structure of great interest to geophysics and materials science," Washington DC American Geophysical Union Geophysical Monograph Series, vol. 45, 1989.
    [6] J. P. Attfield, P. Lightfoot, and R. E. Morris, "Perovskites," Dalton Transactions, vol. 44, no. 23, pp. 10541-10542, 2015.
    [7] C. Zener, "Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure," Physical Review, vol. 82, no. 3, p. 403, 1951.
    [8] Z. Cheng and J. Lin, "Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering," CrystEngComm, vol. 12, no. 10, pp. 2646-2662, 2010.
    [9] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, "Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites," Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
    [10] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J.-P. Ahn, J. W. Lee, and J. K. Song, "Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning," Nano letters, vol. 15, no. 8, pp. 5191-5199, 2015.
    [11] P. J. Cegielski, S. Neutzner, C. Porschatis, H. Lerch, J. Bolten, S. Suckow, A. R. S. Kandada, B. Chmielak, A. Petrozza, and T. Wahlbrink, "Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication," Optics express, vol. 25, no. 12, pp. 13199-13206, 2017.
    [12] X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao, and B. Wang, "Recent progress in organometal halide perovskite photodetectors," Organic Electronics, vol. 52, pp. 172-183, 2018.
    [13] L. P. Cheng, J. S. Huang, Y. Shen, G. P. Li, X. K. Liu, W. Li, Y. H. Wang, Y. Q. Li, Y. Jiang, and F. Gao, "Efficient CsPbBr3 Perovskite Light‐Emitting Diodes Enabled by Synergetic Morphology Control," Advanced Optical Materials, vol. 7, no. 4, p. 1801534, 2019.
    [14] F. Fu, T. Feurer, T. P. Weiss, S. Pisoni, E. Avancini, C. Andres, S. Buecheler, and A. N. Tiwari, "High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration," Nature Energy, vol. 2, no. 1, p. 16190, 2017.
    [15] Y. Dong, Y. Zou, J. Song, X. Song, and H. Zeng, "Recent progress of metal halide perovskite photodetectors," Journal of Materials Chemistry C, vol. 5, no. 44, pp. 11369-11394, 2017.
    [16] E. Lafalce, C. Zhang, Y. Zhai, D. Sun, and Z. Vardeny, "Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation," Journal of Applied Physics, vol. 120, no. 14, p. 143101, 2016.
    [17] Y. K. Chih, J. C. Wang, R. T. Yang, C. C. Liu, Y. C. Chang, Y. S. Fu, W. C. Lai, P. Chen, T. C. Wen, and Y. C. Huang, "NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite‐Based Light‐Emitting Diodes," Advanced Materials, vol. 28, no. 39, pp. 8687-8694, 2016.
    [18] K.-M. Chiang, B.-W. Hsu, Y.-A. Chang, L. Yang, W.-L. Tsai, and H.-W. Lin, "Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices," ACS applied materials & interfaces, vol. 9, no. 46, pp. 40516-40522, 2017.
    [19] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, "High performance perovskite solar cells by hybrid chemical vapor deposition," Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014.
    [20] M. R. Leyden, L. Meng, Y. Jiang, L. K. Ono, L. Qiu, E. J. Juarez-Perez, C. Qin, C. Adachi, and Y. Qi, "Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition," The journal of physical chemistry letters, vol. 8, no. 14, pp. 3193-3198, 2017.
    [21] M. Era, S. Morimoto, T. Tsutsui, and S. Saito, "Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3) 2PbI4," Applied physics letters, vol. 65, no. 6, pp. 676-678, 1994.
    [22] K. Chondroudis and D. B. Mitzi, "Electroluminescence from an organic− inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers," Chemistry of materials, vol. 11, no. 11, pp. 3028-3030, 1999.
    [23] M. H. Song, J. C. Yu, J. H. Park, and S. Y. Lee, "Effect of perovskite film morphology on device performance in perovskite light-emitting diodes," Nanoscale, 2019.
    [24] 陳金鑫,黃孝文, "OLED:有機電激發光材料與元件," 五南圖書出版, 2005.
    [25] 施敏,李明逵、曾俊元, "半導體元件物理與製作技術," 交通大學出版社, vol. 第三版, 2013.
    [26] G. Masetti, M. Severi, and S. Solmi, "Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon," IEEE Transactions on electron devices, vol. 30, no. 7, pp. 764-769, 1983.
    [27] H. Zhang, F. Ye, W. Li, R. S. Gurney, D. Liu, C. Xiong, and T. Wang, "Improved performance of perovskite light-emitting diodes by dual passivation with an ionic additive," ACS Applied Energy Materials, 2019.
    [28] 許耀元, "離子添加劑於全無機鹵化銫鈣鈦礦發光二極體元件," 國立成功大學光電科學與工程研究所碩士論文, 2019.
    [29] 周家賢, "表徵鈣鈦礦發光二極體內偏壓誘發離子遷移效應," 國立成功大學光電科學與工程研究所碩士論文, 2019.
    [30] H. Zhang, F. Ye, W. Li, J. Yao, R. S. Gurney, D. Liu, C. Xiong, and T. Wang, "Bright perovskite light-emitting diodes with improved film morphology and reduced trap density via surface passivation using quaternary ammonium salts," Organic Electronics, vol. 67, pp. 187-193, 2019.
    [31] M. Zhang, F. Yuan, W. Zhao, B. Jiao, C. Ran, W. Zhang, and Z. Wu, "High performance organo-lead halide perovskite light-emitting diodes via surface passivation of phenethylamine," Organic Electronics, vol. 60, pp. 57-63, 2018.
    [32] K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, and T.-C. Wen, "p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells," Scientific Reports, Article vol. 4, p. 4756, 04/23/online 2014.
    [33] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, "Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar‐heterojunction hybrid solar cells," Advanced materials, vol. 26, no. 24, pp. 4107-4113, 2014.
    [34] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z.-K. Tan, M. L. Lai, J. L. MacManus-Driscoll, and N. C. Greenham, "Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix," The journal of physical chemistry letters, vol. 6, no. 3, pp. 446-450, 2015.
    [35] A. Varadwaj, P. R. Varadwaj, and K. Yamashita, "Revealing the Chemistry between Band Gap and Binding Energy for Lead‐/Tin‐Based Trihalide Perovskite Solar Cell Semiconductors," ChemSusChem, vol. 11, no. 2, pp. 449-463, 2018.
    [36] D. Priante, I. Dursun, M. Alias, D. Shi, V. Melnikov, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, "The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites," Applied Physics Letters, vol. 106, no. 8, p. 081902, 2015.
    [37] H. Ji, Z. Shi, X. Sun, Y. Li, S. Li, L. Lei, D. Wu, T. Xu, X. Li, and G. Du, "Vapor-Assisted Solution Approach for High-Quality Perovskite CH3NH3PbBr3 Thin Films for High-Performance Green Light-Emitting Diode Applications," ACS applied materials & interfaces, vol. 9, no. 49, pp. 42893-42904, 2017.
    [38] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
    [39] 羅聖全, "科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)," 科學研習月刊, 2013.
    [40] V. Drits, J. Środoń, and D. Eberl, "XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation," Clays and clay minerals, vol. 45, no. 3, pp. 461-475, 1997.
    [41] L. Hashemi and A. Morsali, "Solid state structural transformation of bromide coordination polymer to chloride by anion replacement; new precursors for preparation of PbBr 2 and PbCl 2 nanoparticles," RSC Advances, vol. 4, no. 33, pp. 17265-17267, 2014.
    [42] J. C. Yu, D. W. Kim, D. B. Kim, E. D. Jung, J. H. Park, A. Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, and M. H. Song, "Improving the Stability and Performance of Perovskite Light‐Emitting Diodes by Thermal Annealing Treatment," Advanced Materials, vol. 28, no. 32, pp. 6906-6913, 2016.
    [43] A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, and L. Sinatra, "Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals," The journal of physical chemistry letters, vol. 7, no. 2, pp. 295-301, 2016.
    [44] Y. Li, M. Yan, M. Jiang, R. Dhakal, P. S. Thapaliya, and X. Yan, "Organic-inorganic hybrid solar cells made from hyperbranched phthalocyanines," Journal of Photonics for Energy, vol. 1, no. 1, p. 011115, 2011.
    [45] N. F. Jamaludin, N. Yantara, Y. F. Ng, M. Li, T. W. Goh, K. Thirumal, T. C. Sum, N. Mathews, C. Soci, and S. Mhaisalkar, "Grain Size Modulation and Interfacial Engineering of CH3NH3PbBr3 Emitter Films through Incorporation of Tetraethylammonium Bromide," ChemPhysChem, vol. 19, no. 9, pp. 1075-1080, 2018.
    [46] K.-z. Du, Q. Tu, X. Zhang, Q. Han, J. Liu, S. Zauscher, and D. B. Mitzi, "Two-dimensional lead (II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity," Inorganic chemistry, vol. 56, no. 15, pp. 9291-9302, 2017.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE