| 研究生: |
楊秀卉 Yang, Siou-Huei |
|---|---|
| 論文名稱: |
以化學氣相沉積法成長鈣鈦礦薄膜與鈣鈦礦發光二極體之研究 Research on perovskite films and perovskite light-emitting diodes prepared by chemical vapor deposition |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 化學氣相沉積法 、結晶性 、結晶速率 、鈣鈦礦發光二極體 、高品質的鈣鈦礦薄膜 |
| 外文關鍵詞: | chemical vapor deposition, crystallinity, crystallization rate, perovskite light-emitting diode, high-quality perovskite film |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以兩步法成長鈣鈦礦薄膜,先以旋轉塗布法成長溴化鉛(PbBr2)薄膜,再將其以化學氣相沉積法反應鈣鈦礦薄膜。首先,我們控制溫度以成長不同結晶性的PbBr2薄膜,發現以非晶的PbBr2薄膜成長的鈣鈦礦薄膜所製成的元件有較好的亮度及電流效率。接著我們改變化學氣相沉積系統中MABr與氯化膽鹼(CC)的比例,以氯化膽鹼的劑量來控制鈣鈦礦薄膜的結晶速率,添加越多的氯化膽鹼可以使鈣鈦礦結晶速度越快,但若結晶速度太快薄膜會有孔洞產生且表面較粗糙以降低薄膜品質,因此於化學氣相沉積系統中添加550 mg的MABr與206.3 mg的CC成長的鈣鈦礦薄膜所製成的元件表現最佳。另外,發現於化學氣相沉積系統中添加氯化膽鹼可以使氯化膽鹼中的氯離子和MAPbBr3中部份的溴離子進行置換形成MAPbClxBr3-x,使發光波段由536 nm藍移至516 nm。
最後,我們添加適量的PEA於PbBr2的前驅溶液中以成長出高品質的鈣鈦礦薄膜,並將其作為發光層製備成鈣鈦礦發光二極體元件,亮度由4070 cd/m2大幅提升至20869 cd/m2;電流效率也由1.26 cd/A增加至3.99 cd/A。
In this study, the perovskite film was grown by two-step process. The lead bromide film was first grown by spin coating, and then the perovskite film was reacted by chemical vapor deposition. First, we controlled the temperature to grow PbBr2 films with different crystallinity. It was found that perovskite light-emitting diode made of a perovskite film grown with an amorphous PbBr2 film have better brightness and current efficiency. Then we changed different ratio of MABr and choline chloride (CC) in the chemical vapor deposition system. It was found that the more choline chloride added, the perovskite film can grow faster. But if the crystallization rate is too fast, the film will have pores and the surface is rough to reduce the film quality. Therefore, perovskite light-emitting diode made by adding 550 mg of MABr and 206.3 mg of CC in the chemical vapor deposition system performed best. In addition, it was found that the addition of choline chloride to the chemical vapor deposition system can replace the chloride ions in choline chloride and some of the bromide ions in MAPbBr3 to form MAPbClxBr3-x, and shift the luminescence band from 536 nm blue to 516 nm. Finally, we added a proper amount of PEA in the PbBr2 precursor solution to grow a high-quality perovskite film, and used it as a light-emitting layer to prepare a perovskite light-emitting diode device, and the brightness was greatly improved from 4070 cd/m2 to 20869 cd/m2; current efficiency also increased from 1.26 cd/A to 3.99 cd/A.
[1] 陳隆建, "LED元件與產業概況," 五南圖書出版, 2012.
[2] H. J. Round, "Light-emitting diodes hit the centenary milestone," World, vol. 19, p. 309, 1907.
[3] N. Holonyak Jr and S. Bevacqua, "Coherent (visible) light emission from Ga (As1− x P x) junctions," Applied Physics Letters, vol. 1, no. 4, pp. 82-83, 1962.
[4] L. Zhao and B. P. Rand, "Metal‐Halide Perovskites: Emerging Light‐Emitting Materials," Information Display, vol. 34, no. 6, pp. 18-22, 2018.
[5] A. Navrotsky and D. J. Weidner, "Perovskite: a structure of great interest to geophysics and materials science," Washington DC American Geophysical Union Geophysical Monograph Series, vol. 45, 1989.
[6] J. P. Attfield, P. Lightfoot, and R. E. Morris, "Perovskites," Dalton Transactions, vol. 44, no. 23, pp. 10541-10542, 2015.
[7] C. Zener, "Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure," Physical Review, vol. 82, no. 3, p. 403, 1951.
[8] Z. Cheng and J. Lin, "Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering," CrystEngComm, vol. 12, no. 10, pp. 2646-2662, 2010.
[9] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, "Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites," Acta Crystallographica Section B: Structural Science, vol. 64, no. 6, pp. 702-707, 2008.
[10] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J.-P. Ahn, J. W. Lee, and J. K. Song, "Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning," Nano letters, vol. 15, no. 8, pp. 5191-5199, 2015.
[11] P. J. Cegielski, S. Neutzner, C. Porschatis, H. Lerch, J. Bolten, S. Suckow, A. R. S. Kandada, B. Chmielak, A. Petrozza, and T. Wahlbrink, "Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication," Optics express, vol. 25, no. 12, pp. 13199-13206, 2017.
[12] X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao, and B. Wang, "Recent progress in organometal halide perovskite photodetectors," Organic Electronics, vol. 52, pp. 172-183, 2018.
[13] L. P. Cheng, J. S. Huang, Y. Shen, G. P. Li, X. K. Liu, W. Li, Y. H. Wang, Y. Q. Li, Y. Jiang, and F. Gao, "Efficient CsPbBr3 Perovskite Light‐Emitting Diodes Enabled by Synergetic Morphology Control," Advanced Optical Materials, vol. 7, no. 4, p. 1801534, 2019.
[14] F. Fu, T. Feurer, T. P. Weiss, S. Pisoni, E. Avancini, C. Andres, S. Buecheler, and A. N. Tiwari, "High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration," Nature Energy, vol. 2, no. 1, p. 16190, 2017.
[15] Y. Dong, Y. Zou, J. Song, X. Song, and H. Zeng, "Recent progress of metal halide perovskite photodetectors," Journal of Materials Chemistry C, vol. 5, no. 44, pp. 11369-11394, 2017.
[16] E. Lafalce, C. Zhang, Y. Zhai, D. Sun, and Z. Vardeny, "Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation," Journal of Applied Physics, vol. 120, no. 14, p. 143101, 2016.
[17] Y. K. Chih, J. C. Wang, R. T. Yang, C. C. Liu, Y. C. Chang, Y. S. Fu, W. C. Lai, P. Chen, T. C. Wen, and Y. C. Huang, "NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite‐Based Light‐Emitting Diodes," Advanced Materials, vol. 28, no. 39, pp. 8687-8694, 2016.
[18] K.-M. Chiang, B.-W. Hsu, Y.-A. Chang, L. Yang, W.-L. Tsai, and H.-W. Lin, "Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices," ACS applied materials & interfaces, vol. 9, no. 46, pp. 40516-40522, 2017.
[19] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, "High performance perovskite solar cells by hybrid chemical vapor deposition," Journal of Materials Chemistry A, vol. 2, no. 44, pp. 18742-18745, 2014.
[20] M. R. Leyden, L. Meng, Y. Jiang, L. K. Ono, L. Qiu, E. J. Juarez-Perez, C. Qin, C. Adachi, and Y. Qi, "Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition," The journal of physical chemistry letters, vol. 8, no. 14, pp. 3193-3198, 2017.
[21] M. Era, S. Morimoto, T. Tsutsui, and S. Saito, "Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3) 2PbI4," Applied physics letters, vol. 65, no. 6, pp. 676-678, 1994.
[22] K. Chondroudis and D. B. Mitzi, "Electroluminescence from an organic− inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers," Chemistry of materials, vol. 11, no. 11, pp. 3028-3030, 1999.
[23] M. H. Song, J. C. Yu, J. H. Park, and S. Y. Lee, "Effect of perovskite film morphology on device performance in perovskite light-emitting diodes," Nanoscale, 2019.
[24] 陳金鑫,黃孝文, "OLED:有機電激發光材料與元件," 五南圖書出版, 2005.
[25] 施敏,李明逵、曾俊元, "半導體元件物理與製作技術," 交通大學出版社, vol. 第三版, 2013.
[26] G. Masetti, M. Severi, and S. Solmi, "Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon," IEEE Transactions on electron devices, vol. 30, no. 7, pp. 764-769, 1983.
[27] H. Zhang, F. Ye, W. Li, R. S. Gurney, D. Liu, C. Xiong, and T. Wang, "Improved performance of perovskite light-emitting diodes by dual passivation with an ionic additive," ACS Applied Energy Materials, 2019.
[28] 許耀元, "離子添加劑於全無機鹵化銫鈣鈦礦發光二極體元件," 國立成功大學光電科學與工程研究所碩士論文, 2019.
[29] 周家賢, "表徵鈣鈦礦發光二極體內偏壓誘發離子遷移效應," 國立成功大學光電科學與工程研究所碩士論文, 2019.
[30] H. Zhang, F. Ye, W. Li, J. Yao, R. S. Gurney, D. Liu, C. Xiong, and T. Wang, "Bright perovskite light-emitting diodes with improved film morphology and reduced trap density via surface passivation using quaternary ammonium salts," Organic Electronics, vol. 67, pp. 187-193, 2019.
[31] M. Zhang, F. Yuan, W. Zhao, B. Jiao, C. Ran, W. Zhang, and Z. Wu, "High performance organo-lead halide perovskite light-emitting diodes via surface passivation of phenethylamine," Organic Electronics, vol. 60, pp. 57-63, 2018.
[32] K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, and T.-C. Wen, "p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells," Scientific Reports, Article vol. 4, p. 4756, 04/23/online 2014.
[33] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, "Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar‐heterojunction hybrid solar cells," Advanced materials, vol. 26, no. 24, pp. 4107-4113, 2014.
[34] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z.-K. Tan, M. L. Lai, J. L. MacManus-Driscoll, and N. C. Greenham, "Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix," The journal of physical chemistry letters, vol. 6, no. 3, pp. 446-450, 2015.
[35] A. Varadwaj, P. R. Varadwaj, and K. Yamashita, "Revealing the Chemistry between Band Gap and Binding Energy for Lead‐/Tin‐Based Trihalide Perovskite Solar Cell Semiconductors," ChemSusChem, vol. 11, no. 2, pp. 449-463, 2018.
[36] D. Priante, I. Dursun, M. Alias, D. Shi, V. Melnikov, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, "The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites," Applied Physics Letters, vol. 106, no. 8, p. 081902, 2015.
[37] H. Ji, Z. Shi, X. Sun, Y. Li, S. Li, L. Lei, D. Wu, T. Xu, X. Li, and G. Du, "Vapor-Assisted Solution Approach for High-Quality Perovskite CH3NH3PbBr3 Thin Films for High-Performance Green Light-Emitting Diode Applications," ACS applied materials & interfaces, vol. 9, no. 49, pp. 42893-42904, 2017.
[38] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[39] 羅聖全, "科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)," 科學研習月刊, 2013.
[40] V. Drits, J. Środoń, and D. Eberl, "XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation," Clays and clay minerals, vol. 45, no. 3, pp. 461-475, 1997.
[41] L. Hashemi and A. Morsali, "Solid state structural transformation of bromide coordination polymer to chloride by anion replacement; new precursors for preparation of PbBr 2 and PbCl 2 nanoparticles," RSC Advances, vol. 4, no. 33, pp. 17265-17267, 2014.
[42] J. C. Yu, D. W. Kim, D. B. Kim, E. D. Jung, J. H. Park, A. Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, and M. H. Song, "Improving the Stability and Performance of Perovskite Light‐Emitting Diodes by Thermal Annealing Treatment," Advanced Materials, vol. 28, no. 32, pp. 6906-6913, 2016.
[43] A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, and L. Sinatra, "Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals," The journal of physical chemistry letters, vol. 7, no. 2, pp. 295-301, 2016.
[44] Y. Li, M. Yan, M. Jiang, R. Dhakal, P. S. Thapaliya, and X. Yan, "Organic-inorganic hybrid solar cells made from hyperbranched phthalocyanines," Journal of Photonics for Energy, vol. 1, no. 1, p. 011115, 2011.
[45] N. F. Jamaludin, N. Yantara, Y. F. Ng, M. Li, T. W. Goh, K. Thirumal, T. C. Sum, N. Mathews, C. Soci, and S. Mhaisalkar, "Grain Size Modulation and Interfacial Engineering of CH3NH3PbBr3 Emitter Films through Incorporation of Tetraethylammonium Bromide," ChemPhysChem, vol. 19, no. 9, pp. 1075-1080, 2018.
[46] K.-z. Du, Q. Tu, X. Zhang, Q. Han, J. Liu, S. Zauscher, and D. B. Mitzi, "Two-dimensional lead (II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity," Inorganic chemistry, vol. 56, no. 15, pp. 9291-9302, 2017.