簡易檢索 / 詳目顯示

研究生: 宋易達
Song, Yi-Da
論文名稱: 選擇性控制聚合聚苯胺生成於金屬有機骨架奈米孔洞中並用作超電容器材料
Polyaniline Selectively Confined in the Nanopores of a Metal–Organic Framework as the Material for Supercapacitors
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 導電高分子奈米複合材料孔洞限制擬電容性質材料以鋯為金屬節點的金屬有機骨架
外文關鍵詞: conducting polymer, nanocomposite, pore confinement, pseudocapacitive material, zirconium-based MOF
相關次數: 點閱:103下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal–Organic Framework, MOF)由於具備規律的孔洞結構和高比表面積,近年來被大量使用於在各項應用中。其中,以MOF製成的修飾電極由於能提升單位體積的電化學活性位點,在眾多電化學應用領域中極具吸引力與潛力。但是大多數的MOF缺乏化學穩定性以及是電的不良導體,大幅限縮其在電化學領域上的應用。
    因此,於本篇研究中,我們選擇以鋯為節點的金屬有機骨架(Zirconium-based MOF, Zr-MOF)-UiO-66-NH2作為MOF材料,並結合導電高分子聚苯胺(Polyaniline, PANI)形成奈米複合材料。並且,本研究為首次透過具策略性的實驗方法,選擇性地將PANI限制生成於MOF的奈米孔洞中,同時可以避免大量成堆的聚苯胺(Bulk PANI)生成於MOF晶體間,進而得到所需的奈米複合材料(PANI/UiO-66-NH2 Nanocomposites)。
    以PANI/UiO-66-NH2製備的修飾電極在電化學測試中除了表現出擬電容性質外,由於孔洞限制,使其具有優於Bulk PANI的電化學活性以及電荷儲存的容量,同時也在長期充放電過程中(6000 cycles)展現優異的循環穩定性,為適合用作超電容器的材料。

    In this thesis, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal–organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2, is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS).
    Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.

    目錄 中文摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 電化學介紹 1 1-1-1 電化學原理與電化學反應系統 1 1-1-2 修飾電極(Modified electrode)與常見電化學應用 5 1-2 電化學儲能 12 1-3 聚苯胺(Polyaniline, PANI)以及聚苯胺-聚苯乙烯磺酸钠(polyaniline: Poly(sodium 4-styrenesulfonate), PANI:PSS)複合物 17 1-4 金屬有機骨架(Metal–Organic Frameworks, MOFs) 25 1-5 聚苯胺-金屬有機骨架複合材料(PANI/MOF)的簡介與應用 32 1-6 實驗動機 35 第二章 實驗方法與儀器介紹 37 2-1 實驗藥品 37 2-2 實驗儀器 39 2-3 材料合成方法 41 2-3-1 金屬有機骨架(UiO-66-NH2) 41 2-3-2 聚苯胺(PANI) 41 2-3-3 複合材料(PANI/UiO-66-NH2) 44 2-4 錠片(pellet)的製備與導電度的測量 45 2-5修飾電極(modified thin film)的製備與電化學表現的測量 46 2-6 感應耦合電漿原子發射光譜(Inductively coupled plasma-optical emission spectrometry (ICP-OES))樣品製備 47 第三章 結果與討論 48 3-1 材料鑑定 48 3-1-1 粉末X射線繞射圖譜(Powder X-ray Diffraction patterns, PXRD patterns) 48 3-1-2 掃描式電子顯微鏡圖(Scanning Electron Microscopic images, SEM images) 52 3-1-3 穿透式電子顯微鏡圖(Transmission Electron Microscopic images, TEM images) 54 3-1-4 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 56 3-1-5 氮氣吸脫附曲線以及孔徑分布(Nitrogen adsorption-desorption isotherm and Density Functional Theory (DFT) pore size distribution) 59 3-1-6 奈米複合材料中聚苯胺質量百分濃度(Mass fraction of PANI in PANI/UiO-66-NH2 nanocomposites) 62 3-1-7 導電度(Electrical conductivity) 63 3-2 循環伏安法分析(Cyclic voltammetric analysis) 66 3-3 定電流充放電曲線(Galvanostatic Charge-Discharge curve, GCD curve) 71 3-4 定電流充放電長期循環穩定性分析(Stability of long-term charge-discharge process) 78 第四章 結論 82 第五章 未來展望與建議 84 參考文獻 86 附錄:個人簡歷表 112

    參考文獻
    [1] A. J. Bard, and L. R. Faulkner, Fundamentals and Applications. John Wiley & Sons, New York, 2001.
    [2] S. R. Ahrenholtz, C. C. Epley, and A. J. Morris; Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism. J. Am. Chem. Soc., 136, 2464-2472, 2014.
    [3] P. Bertoncello, I. Ciani, F. Li, and P. R. Unwin; Measurement of Apparent Diffusion Coefficients within Ultrathin Nafion Langmuir−Schaefer Films:  Comparison of a Novel Scanning Electrochemical Microscopy Approach with Cyclic Voltammetry. Langmuir, 22, 10380-10388, 2006.
    [4] M. Shi, and F. C. Anson; Rapid Oxidation of Ru(NH3)63+ by Os(bpy)33+ within Nafion Coatings on Electrodes. Langmuir, 12, 2068-2075, 1996.
    [5] S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu; Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catal., 6, 8069-8097, 2016.
    [6] S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair, and A. S. Nair; A Review on Counter Electrode Materials in Dye-Sensitized Solar Cells. J. Mater. Chem. A, 2, 4474-4490, 2014.
    [7] M. Shao, Q. Chang, J. P. Dodelet, and R. Chenitz; Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev., 116, 3594-3657, 2016.
    [8] E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja; Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chem. Soc. Rev., 38, 89-99, 2009.
    [9] M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. K. Norskov, and A. T. Bell; Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. J. Am. Chem. Soc., 135, 13521-13530, 2013.
    [10] X. Li, X. Hao, A. Abudula, and G. Guan; Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects. J. Mater. Chem. A, 4, 11973-12000, 2016.
    [11] M. I. Jamesh; Recent Progress on Earth Abundant Hydrogen Evolution Reaction and Oxygen Evolution Reaction Bifunctional Electrocatalyst for Overall Water Splitting in Alkaline Media. J. Power Sources, 333, 213-236, 2016.
    [12] C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, and T. F. Jaramillo; Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc., 137, 4347-4357, 2015.
    [13] C. C. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo; Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc., 135, 16977-169987, 2013.
    [14] D. W. Hwang, S. Lee, M. Seo, and T. D. Chung; Recent Advances in Electrochemical Non-Enzymatic Glucose Sensors - A Review. Anal. Chim. Acta, 1033, 1-34, 2018.
    [15] X. Lin, Y. Ni, and S. Kokot; Electrochemical Cholesterol Sensor Based on Cholesterol Oxidase and MoS2-AuNPs Modified Glassy Carbon Electrode. Sens. Actuators B Chem., 233, 100-106, 2016.
    [16] A. Salimi, R. Hallaj, S. Soltanian, and H. Mamkhezri; Nanomolar Detection of Hydrogen Peroxide on Glassy Carbon Electrode Modified with Electrodeposited Cobalt Oxide Nanoparticles. Anal. Chim. Acta, 594, 24-31, 2007.
    [17] W. Chen, S. Cai, Q. Q. Ren, W. Wen, and Y. D. Zhao; Recent Advances in Electrochemical Sensing for Hydrogen Peroxide: A Review. Analyst, 137, 49-58, 2012.
    [18] P. K. Rastogi, V. Ganesan, and S. Krishnamoorthi; A Promising Electrochemical Sensing Platform Based on a Silver Nanoparticles Decorated Copolymer for Sensitive Nitrite Determination. J. Mater. Chem. A, 2, 933-943, 2014.
    [19] F. Liang, M. Jia, and J. Hu; Pt-Implanted Indium Tin Oxide Electrodes and Their Amperometric Sensor Applications for Nitrite and Hydrogen Peroxide. Electrochim. Acta, 75, 414-419, 2012.
    [20] J.-H. Yang, H. Yang, S. Liu, and L. Mao; Microwave-Assisted Synthesis Graphite-Supported Pd Nanoparticles for Detection of Nitrite. Sens. Actuators B Chem., 220, 652-658, 2015.
    [21] D. Chen, J. Jiang, and X. Du; Electrocatalytic Oxidation of Nitrite Using Metal-Free Nitrogen-Doped Reduced Graphene Oxide Nanosheets for Sensitive Detection. Talanta, 155, 329-335, 2016.
    [22] A. Afkhami, F. Soltani-Felehgari, T. Madrakian, and H. Ghaedi; Surface Decoration of Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode with Gold Nanoparticles for Electro-Oxidation and Sensitive Determination of Nitrite. Biosens. Bioelectron., 51, 379-385, 2014.
    [23] S. Li, J. Qu, Y. Wang, J. Qu, and H. Wang; A Novel Electrochemical Sensor Based on Carbon Nanoparticle Composite Films for the Determination of Nitrite and Hydrogen Peroxide. Anal. Methods, 8, 4204-4210, 2016.
    [24] L. Chen, X. Liu, C. Wang, S. Lv, and C. Chen; Amperometric Nitrite Sensor Based on a Glassy Carbon Electrode Modified with Electrodeposited Poly(3,4-ethylenedioxythiophene) Doped with a Polyacenic Semiconductor. Microchim. Acta, 184, 2073-2079, 2017.
    [25] X.-L. Zhang, J.-X. Wang, Z. Wang, and S.-C. Wang; Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode. Sensors, 5, 580-593, 2005.
    [26] R. Baetens, B. P. Jelle, and A. Gustavsen; Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review. Sol. Energy Mater. Sol. Cells, 94, 87-105, 2010.
    [27] R. J. Mortimer; Electrochromic Materials. Annu. Rev. Mater. Res., 41, 241-268, 2011.
    [28] P. Simon, and Y. Gogotsi; Materials for Electrochemical Capacitors. Nat. Mater., 7, 845-854, 2008.
    [29] J. M. Tarascon, and M. Armand; Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 359-367, 2001.
    [30] J.-Y. Hwang, S.-T. Myung, and Y.-K. Sun; Recent Progress in Rechargeable Potassium Batteries. Adv. Funct. Mater., 28, 2018.
    [31] W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y. M. Kang, and W. S. Yoon; Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed., 59, 2578-2605, 2020.
    [32] C. Choi, D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, and B. Dunn; Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater., 5, 5-19, 2019.
    [33] T. Huang, Y. Jiang, G. Shen, and D. Chen; Recent Advances of Two-Dimensional Nanomaterials for Electrochemical Capacitors. ChemSusChem, 13, 1093-1113, 2020.
    [34] F. Beguin, V. Presser, A. Balducci, and E. Frackowiak; Carbons and Electrolytes for Advanced Supercapacitors. Adv. Mater., 26, 2219-2251, 2014.
    [35] K. Wang, H. Wu, Y. Meng, and Z. Wei; Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small, 10, 14-31, 2014.
    [36] R. F. Service; New 'Supercapacitor' Promises to Pack More Electrical Punch. Science, 313, 902-905, 2006.
    [37] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer, New York, 1999.
    [38] K. Jost, G. Dion, and Y. Gogotsi; Textile Energy Storage in Perspective. J. Mater. Chem. A, 2, 2014.
    [39] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough; LixCoO2 (0<x<-1): A New Cathode Material for Batteries of High Energy Density. Mat. Res. Bull., 15, 783-789, 1980.
    [40] M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough; Lithium Insertion into Manganese Spinels. Mat. Res. Bull., 18, 461-472, 1983.
    [41] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach; Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy Environ. Sci., 4, 3243-3262, 2011.
    [42] R. Kötz, and M. Carlen; Principles and Applications of Electrochemical Capacitors. Electrochim. Acta, 45, 2483-2498, 2000.
    [43] G. Wang, L. Zhang, and J. Zhang; A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012.
    [44] T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, and D. Bélanger; Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc., 153, A2171-A2180, 2006.
    [45] J. P. Zheng, and T. R. Jow; High Energy and High Power Density Electrochemical Capacitors. J. Power Sources, 62, 155-159, 1996.
    [46] J. P. Zheng, and T. R. Jow; A New Charge Storage Mechanism for Electrochemical Capacitors. J. Electrochem. Soc., 142, L6-L8, 1995.
    [47] K. C. Liu, and M. A. Anderson; Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. J. Electrochem. Soc., 143, 124-130, 1996.
    [48] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris; Conducting Polymers as Active Materials in Electrochemical Capacitors. J. Power Sources, 47, 89-107, 1994.
    [49] V. Augustyn, P. Simon, and B. Dunn; Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy Environ. Sci., 7, 2014.
    [50] S. Tajik, H. Beitollahi, F. G. Nejad, I. S. Shoaie, M. A. Khalilzadeh, M. S. Asl, Q. Van Le, K. Zhang, H. W. Jang, and M. Shokouhimehr; Recent Developments in Conducting Polymers: Applications for Electrochemistry. RSC Adv., 10, 37834-37856, 2020.
    [51] G. Liu, H. Bai, B. Zhang, and H. Peng; Role of Organic Components in Electrocatalysis for Renewable Energy Storage. Chem. Eur. J, 24, 18271-18292, 2018.
    [52] A. Malinauskas, J. Malinauskiene, and A. Ramanavicius; Conducting Polymer-Based Nanostructurized Materials: Electrochemical Aspects. Nanotechnology, 16, R51-62, 2005.
    [53] P. Forouzandeh, V. Kumaravel, and S. C. Pillai; Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 10, 969-1040, 2020.
    [54] D. Li, J. Huang, and R. B. Kaner; Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res., 42, 135-145, 2009.
    [55] W. J. Feast; Synthesis, Processing and Material Properties of Conjugated Polymers. Polymer, 37, 5017-5047, 1996.
    [56] C. Dhand, M. Das, M. Datta, and B. D. Malhotra; Recent Advances in Polyaniline Based Biosensors. Biosens. Bioelectron., 26, 2811-2821, 2011.
    [57] A. G. MacDiarmid; “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed., 40, 2581-2590, 2001.
    [58] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang; Theoretical and Experimental Specific Capacitance of Polyaniline in Sulfuric Acid. J. Power Sources, 190, 578-586, 2009.
    [59] D. Zhang, and Y. Wang; Synthesis and Applications of One-Dimensional Nano-Structured Polyaniline: An Overview. Mater. Sci. Eng., B, 134, 9-19, 2006.
    [60] D. Li, and R. B. Kaner; Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred. J. Am. Chem. Soc., 128, 968-975, 2006.
    [61] K. Zhou, Y. He, Q. Xu, Q. Zhang, A. Zhou, Z. Lu, L. K. Yang, Y. Jiang, D. Ge, X. Y. Liu, and H. Bai; A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application. ACS Nano, 12, 5888-5894, 2018.
    [62] W. Liu, J. Kumar, S. Tripathy, K. J. Senecal, and L. Samuelson; Enzymatically Synthesized Conducting Polyaniline. J. Am. Chem. Soc., 121, 71-78, 1999.
    [63] T. Nagaok, H. Nakao, T. Suyama, and K. Ogura; Electrochemical Characterization of Soluble Conducting Polymers as Ion Exchangers. Anal. Chem., 69, 1030-1037, 1997.
    [64] K. Shannon, and J. E. Fernandez; Preparation and Properties of Water-Soluble, Poly(Styrenesulfonic Acid)-Doped Polyaniline. J. Chem. Soc., Chem. Commun., 643-644, 1994.
    [65] J. Stejskal, M. Spirkova, A. Riede, M. Helmstedt, P. Mokreva, and J. Prokes; Polyaniline Dispersions 8. The Control of Particle Morphology. Polymer, 40, 2487-2492, 1999.
    [66] S. Li, Y. Cao, and Z. Xue; Soluble polyaniline. Synth. Met., 20, 141-149, 1987.
    [67] Y. Kang, M.-H. Lee, and S. B. Rhee; Electrochemical Properties of Polyaniline Doped with Poly(styrenesulfonic acid). Synth. Met., 52, 319-328, 1992.
    [68] J. Jang, J. Ha, and J. Cho; Fabrication of Water-Dispersible Polyaniline-Poly(4-styrenesulfonate) Nanoparticles For Inkjet-Printed Chemical-Sensor Applications. Adv. Mater., 19, 1772-1775, 2007.
    [69] C.-W. Hu, T. Kawamoto, H. Tanaka, A. Takahashi, K.-M. Lee, S.-Y. Kao, Y.-C. Liao, and K.-C. Ho; Water Processable Prussian Blue–Polyaniline:Polystyrene Sulfonate Nanocomposite (PB–PANI:PSS) for Multi-Color Electrochromic Applications. J. Mater. Chem. C, 4, 10293-10300, 2016.
    [70] S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee; Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci., 34, 783-810, 2009.
    [71] C. O. Baker, X. Huang, W. Nelson, and R. B. Kaner; Polyaniline Nanofibers: Broadening Applications for Conducting Polymers. Chem. Soc. Rev., 46, 1510-1525, 2017.
    [72] K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu; Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater., 22, 1392-1401, 2010.
    [73] R. R. Salunkhe, S.-H. Hsu, K. C. W. Wu, and Y. Yamauchi; Large-Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem, 7, 1551-1556, 2014.
    [74] R. Soni, V. Kashyap, D. Nagaraju, and S. Kurungot; Realizing High Capacitance and Rate Capability in Polyaniline by Enhancing the Electrochemical Surface Area through Induction of Superhydrophilicity. ACS Appl. Mater. Interfaces, 10, 676-686, 2018.
    [75] W. Chen, S. Jiang, H. Xiao, X. Zhou, X. Xu, J. Yang, A. H. Siddique, and Z. Liu; Graphene Modified Polyaniline-Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem, 14, 938-945, 2021.
    [76] P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, and G. Yu; Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Adv. Mater., 30, 1800124-1811130, 2018.
    [77] S. K. Simotwo, C. DelRe, and V. Kalra; Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline-Carbon Nanotube Nanofibers. ACS Appl. Mater. Interfaces, 8, 21261-21269, 2016.
    [78] G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui; Hybrid Nanostructured Materials for High-Performance Electrochemical Capacitors. Nano Energy, 2, 213-234, 2013.
    [79] M. B. Poudel, M. Shin, and H. J. Kim; Polyaniline-Silver-Manganese Dioxide Nanorod Ternary Composite for Asymmetric Supercapacitor with Remarkable Electrochemical Performance. Int. J. Hydrog. Energy, 46, 474-485, 2021.
    [80] L. Chen, Z. Song, G. Liu, J. Qiu, C. Yu, J. Qin, L. Ma, F. Tian, and W. Liu; Synthesis and Electrochemical Performance of Polyaniline–MnO2 Nanowire Composites for Supercapacitors. J. Phys. Chem. Solids, 74, 360-365, 2013.
    [81] M. M. Mezgebe, K. Xu, G. Wei, S. Guang, and H. Xu; Polyaniline Wrapped Manganese Dioxide Nanorods: Facile Synthesis and as an Electrode Material for Supercapacitors with Remarkable Electrochemical Properties. J. Alloys Compd., 794, 634-644, 2019.
    [82] F. Hekmat, S. Shahrokhian, and N. Taghavinia; Ultralight Flexible Asymmetric Supercapacitors Based On Manganese Dioxide–Polyaniline Nanocomposite and Reduced Graphene Oxide Electrodes Directly Deposited on Foldable Cellulose Papers. J. Phys. Chem. C, 122, 27156-27168, 2018.
    [83] M. N. Rantho, M. J. Madito, F. O. Ochai-Ejeh, and N. Manyala; Asymmetric Supercapacitor Based on Vanadium Disulfide Nanosheets as a Cathode and Carbonized Iron Cations Adsorbed onto Polyaniline as an Anode. Electrochim. Acta, 260, 11-23, 2018.
    [84] H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi; The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 1230444, 2013.
    [85] G. Ferey; Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev., 37, 191-214, 2008.
    [86] I. M. Honicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bonisch, S. Raschke, J. D. Evans, and S. Kaskel; Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem. Int. Ed., 57, 13780-13783, 2018.
    [87] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha; Chemical, Thermal and Mechanical Stabilities of Metal–Organic Frameworks. Nat. Rev. Mater., 1, 15018-15032, 2016.
    [88] J. R. Li, J. Sculley, and H. C. Zhou; Metal-Organic Frameworks for Separations. Chem. Rev., 112, 869-932, 2012.
    [89] L. J. Murray, M. Dinca, and J. R. Long; Hydrogen Storage in Metal-Organic Frameworks. Chem. Soc. Rev., 38, 1294-314, 2009.
    [90] G. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, and H. Kitagawa; Hydrogen Storage in Pd Nanocrystals Covered with a Metal-Organic Framework. Nat. Mater., 13, 802-806, 2014.
    [91] S. Kitagawa, R. Kitaura, and S. Noro; Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004.
    [92] T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, and J. T. Hupp; Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017.
    [93] S. M. Cohen; Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev., 112, 970-1000, 2012.
    [94] M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp, and O. K. Farha; Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett., 3, 598-611, 2018.
    [95] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp; Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev., 38, 1450-9, 2009.
    [96] Q. Yang, Q. Xu, and H. L. Jiang; Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev., 46, 4774-4808, 2017.
    [97] C. H. Kuo, Y. Tang, L. Y. Chou, B. T. Sneed, C. N. Brodsky, Z. Zhao, and C. K. Tsung; Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc., 134, 14345-14348, 2012.
    [98] J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp, and O. K. Farha; Are Zr6-Based MOFs Water Stable? Linker Hydrolysis vs. Capillary-Force-Driven Channel Collapse. Chem. Commun., 50, 8944-8946, 2014.
    [99] M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, and G. Férey; A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. J. Am. Chem. Soc., 131, 10857-10859, 2009.
    [100] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K. P. Lillerud; A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc., 130, 13850-13851, 2008.
    [101] Y. Bai, Y. Dou, L. H. Xie, W. Rutledge, J. R. Li, and H. C. Zhou; Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev., 45, 2327-2367, 2016.
    [102] J.-H. Li, Y.-S. Wang, Y.-C. Chen, and C.-W. Kung; Metal–Organic Frameworks Toward Electrocatalytic Applications. Applied Sciences, 9, 2427-2445, 2019.
    [103] L. Sun, M. G. Campbell, and M. Dinca; Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed., 55, 3566-3579, 2016.
    [104] C. H. Hendon, D. Tiana, and A. Walsh; Conductive Metal-Organic Frameworks and Networks: Fact or Fantasy? Phys. Chem. Chem. Phys., 14, 13120-13132, 2012.
    [105] P. M. Usov, C. Fabian, and D. M. D'Alessandro; Rapid Determination of the Optical and Redox Properties of a Metal-Organic Framework via in situ Solid State Spectroelectrochemistry. Chem. Commun., 48, 3945-3947, 2012.
    [106] S. Lin, P. M. Usov, and A. J. Morris; The Role of Redox Hopping in Metal-Organic Framework Electrocatalysis. Chem. Commun., 54, 6965-6974, 2018.
    [107] P. Stallinga; Electronic Transport in Organic Materials: Comparison of Band Theory with Percolation/(Variable Range) Hopping Theory. Adv. Mater., 23, 3356-3362, 2011.
    [108] D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, and M. Dincă; High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue. J. Am. Chem. Soc., 136, 8859-8862, 2014.
    [109] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, and M. Dinca; Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater., 16, 220-224, 2017.
    [110] M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, and O. M. Yaghi; New Porous Crystals of Extended Metal-Catecholates. Chem. Mater., 24, 3511-3513, 2012.
    [111] S. Goswami, D. Ray, K. I. Otake, C. W. Kung, S. J. Garibay, T. Islamoglu, A. Atilgan, Y. Cui, C. J. Cramer, O. K. Farha, and J. T. Hupp; A Porous, Electrically Conductive Hexa-Zirconium(IV) Metal-Organic Framework. Chem. Sci., 9, 4477-4482, 2018.
    [112] A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. E. Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf; Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 343, 66-69, 2014.
    [113] C. W. Kung, K. Otake, C. T. Buru, S. Goswami, Y. Cui, J. T. Hupp, A. M. Spokoyny, and O. K. Farha; Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc., 140, 3871-3875, 2018.
    [114] Y. C. Chen, W. H. Chiang, D. Kurniawan, P. C. Yeh, K. I. Otake, and C. W. Kung; Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019.
    [115] C. W. Kung, S. Goswami, I. Hod, T. C. Wang, J. Duan, O. K. Farha, and J. T. Hupp; Charge Transport in Zirconium-Based Metal-Organic Frameworks. Acc. Chem. Res., 53, 1187-1195, 2020.
    [116] C.-W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. V. Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp; Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chem. Mater., 25, 5012-5017, 2013.
    [117] I. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh, and I. Hod; Active-Site Modulation in an Fe-Porphyrin-Based Metal-Organic Framework through Ligand Axial Coordination: Accelerating Electrocatalysis and Charge-Transport Kinetics. J. Am. Chem. Soc., 142, 1933-1940, 2020.
    [118] C.-H. Chuang, J.-H. Li, Y.-C. Chen, Y.-S. Wang, and C.-W. Kung; Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. J. Phys. Chem. C, 124, 20854-20863, 2020.
    [119] T.-E. Chang, C.-H. Chuang, and C.-W. Kung; An Iridium-Decorated Metal–Organic Framework for Electrocatalytic Oxidation of Nitrite. Electrochem. Commun., 122, 106899-106904, 2021.
    [120] K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang, and O. M. Yaghi; Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano, 8, 7451-7457, 2014.
    [121] Y.-S. Wang, Y.-C. Chen, J.-H. Li, and C.-W. Kung; Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese. Eur. J. Inorg. Chem., 3036-3044, 2019.
    [122] Y.-S. Wang, J.-L. Liao, Y.-S. Li, Y.-C. Chen, J.-H. Li, W. H. Ho, W.-H. Chiang, and C.-W. Kung; Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Appl. Nano Mater., 3, 1448-1456, 2020.
    [123] C. H. Shen, C. H. Chuang, Y. J. Gu, W. H. Ho, Y. D. Song, Y. C. Chen, Y. C. Wang, and C. W. Kung; Cerium-Based Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Appl. Mater. Interfaces, 13, 16418-16426, 2021.
    [124] P. M. Usov, B. Huffman, C. C. Epley, M. C. Kessinger, J. Zhu, W. A. Maza, and A. J. Morris; Study of Electrocatalytic Properties of Metal-Organic Framework PCN-223 for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces, 9, 33539-33543, 2017.
    [125] C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang, and K.-C. Ho; In Situ Growth of Porphyrinic Metal–Organic Framework Nanocrystals on Graphene Nanoribbons for the Electrocatalytic Oxidation of Nitrite. J. Mater. Chem. A, 4, 10673-10682, 2016.
    [126] Y.-S. Chang, J.-H. Li, Y.-C. Chen, W. H. Ho, Y.-D. Song, and C.-W. Kung; Electrodeposition of Pore-Confined Cobalt in Metal–Organic Framework Thin Films toward Electrochemical H2O2 Detection. Electrochim. Acta, 347, 136276-136285, 2020.
    [127] J.-H. Li, Y.-C. Chen, Y.-S. Wang, W. H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song, and C.-W. Kung; Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal–Organic Framework (MOF) for All-MOF-Based Pseudocapacitors. ACS Appl. Energy Mater., 3, 6258-6267, 2020.
    [128] Y.-C. Wang, Y.-C. Chen, W.-S. Chuang, J.-H. Li, Y.-S. Wang, C.-H. Chuang, C.-Y. Chen, and C.-W. Kung; Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Appl. Nano Mater., 3, 9440-9448, 2020.
    [129] X. Hou, T. Xu, Y. Wang, S. Liu, R. Chu, J. Zhang, and B. Liu; Conductive and Chiral Polymer-Modified Metal-Organic Framework for Enantioselective Adsorption and Sensing. ACS Appl. Mater. Interfaces, 10, 26365-26371, 2018.
    [130] L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, and B. Wang; Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. J. Am. Chem. Soc., 137, 4920-4923, 2015.
    [131] Y. Wang, L. Wang, W. Huang, T. Zhang, X. Hu, J. A. Perman, and S. Ma; A Metal–Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Performance Cadmium Ion Detection. J. Mater. Chem. A, 5, 8385-8393, 2017.
    [132] L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, and N. Wang; A High-Capacitance Flexible Solid-State Supercapacitor Based on Polyaniline and Metal-Organic Framework (UiO-66) Composites. J. Power Sources, 379, 350-361, 2018.
    [133] S. B. Aliev, D. G. Samsonenko, E. A. Maksimovskiy, E. O. Fedorovskaya, S. A. Sapchenko, and V. P. Fedin; Polyaniline-Intercalated MIL-101: Selective CO2 Sorption and Supercapacitor Properties. New J. Chem., 40, 5306-5312, 2016.
    [134] Q. Wang, L. Shao, Z. Ma, J. Xu, Y. Li, and C. Wang; Hierarchical Porous PANI/MIL-101 Nanocomposites Based Solid-State Flexible Supercapacitor. Electrochim. Acta, 281, 582-593, 2018.
    [135] N. A. Khan, D. K. Yoo, and S. H. Jhung; Polyaniline-Encapsulated Metal-Organic Framework MIL-101: Adsorbent with Record-High Adsorption Capacity for the Removal of Both Basic Quinoline and Neutral Indole from Liquid Fuel. ACS Appl. Mater. Interfaces, 10, 35639-35646, 2018.
    [136] C. C. Lin, Y. C. Huang, M. Usman, W. H. Chao, W. K. Lin, T. T. Luo, W. T. Whang, C. H. Chen, and K. L. Lu; Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. ACS Appl. Mater. Interfaces, 11, 3400-3406, 2019.
    [137] A. K. Singh, S. Gonuguntla, B. Mahajan, and U. Pal; Noble Metal-Free Integrated UiO-66-PANI-Co3O4 Catalyst for Visible-Light-Induced H2 Production. Chem. Commun., 55, 14494-14497, 2019.
    [138] L. Li, Y. Xu, and D. Zhong; Highly Efficient Adsorption and Reduction of Cr(VI) Ions by a Core-Shell Fe3O4@UiO-66@PANI Composite. J. Phys. Chem. A, 124, 2854-2862, 2020.
    [139] M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, and K. P. Lillerud; Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater., 22, 6632-6640, 2010.
    [140] M. R. DeStefano, T. Islamoglu, S. J. Garibay, J. T. Hupp, and O. K. Farha; Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chem. Mater., 29, 1357-1361, 2017.
    [141] A. Mostafaei, and A. Zolriasatein; Synthesis and Characterization of Conducting Polyaniline Nanocomposites Containing ZnO Nanorods. Prog. Nat. Sci., 22, 273-280, 2012.
    [142] A. Kumar, L. K. Jangir, Y. Kumari, M. Kumar, V. Kumar, and K. Awasthi; Optical and Structural Study of Polyaniline/Polystyrene Composite Films. Macromol. Symp., 357, 229-234, 2015.
    [143] P. Scherrer; Bestimmung Der Grösse Und Der Inneren Sruktur Von Kolloidteilchen Mittels Röntgenstrahlen. Nachr. Ges. Wissenschaft. Göttingen, 3, 98-100, 1918.
    [144] C. A. Trickett, K. J. Gagnon, S. Lee, F. Gandara, H. B. Burgi, and O. M. Yaghi; Definitive Molecular Level Characterization of Defects in UiO-66 Crystals. Angew. Chem. Int. Ed., 54, 11162-11167, 2015.
    [145] S. N. Tambat, P. K. Sane, S. Suresh, N. Varadan O, A. B. Pandit, and S. M. Sontakke; Hydrothermal Synthesis of NH2-UiO-66 and its Application for Adsorptive Removal of Dye. Adv. Powder Technol., 29, 2626-2632, 2018.
    [146] K. Vellingiri, A. Deep, K.-H. Kim, D. W. Boukhvalov, P. Kumar, and Q. Yao; The Sensitive Detection of Formaldehyde in Aqueous Media Using Zirconium-Based Metal Organic Frameworks. Sens. Actuators B Chem., 241, 938-948, 2017.
    [147] I. Ahmed, and S. H. Jhung; Effective Adsorptive Removal of Indole from Model Fuel Using a Metal-Organic Framework Functionalized with Amino Groups. J. Hazard. Mater., 283, 544-550, 2015.
    [148] H. Molavi, A. Eskandari, A. Shojaei, and S. A. Mousavi; Enhancing CO2/N2 Adsorption Selectivity via Post-Synthetic Modification of NH2-UiO-66(Zr). Microporous Mesoporous Mater., 257, 193-201, 2018.
    [149] X. Zhang, Y. Zhang, T. Wang, Z. Fan, and G. Zhang; A Thin Film Nanocomposite Membrane with Pre-Immobilized UiO-66-NH2 toward Enhanced Nanofiltration Performance. RSC Adv., 9, 24802-24810, 2019.
    [150] J. Shanahan, D. S. Kissel, and E. Sullivan; PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega, 5, 6395-6404, 2020.
    [151] R. Oraon, A. De Adhikari, S. K. Tiwari, and G. C. Nayak; Enhanced Specific Capacitance of Self-Assembled Three-Dimensional Carbon Nanotube/Layered Silicate/Polyaniline Hybrid Sandwiched Nanocomposite for Supercapacitor Applications. ACS Sustainable Chem. Eng., 4, 1392-1403, 2016.
    [152] K. Zhang, and X. Jing; Preparation and Characterization of Polyaniline with High Electrical Conductivity. Polym. Adv. Technol., 20, 689-695, 2009.
    [153] P. N. Adams, P. J. Laughlin, and A. P. Monkman; Synthesis of High Molecular Weight Polyaniline at Low Temperatures Synth. Met., 76, 157-160, 1996.
    [154] J. Stejskal, A. Riede, D. Hlavatá, J. Prokeš, M. Helmstedt, and P. Holler; The Effect of Polymerization Temperature on Molecular Weight, Crystallinity, and Electrical Conductivity of Polyaniline. Synth. Met., 96, 55-61, 1998.
    [155] P. N. Adams, D. C. Apperley, and A. P. Monkman; A Comparison of the Molecular Weights of Polyaniline Samples Obtained from Gel Permeation Chromatography and Solid State 15N N.M.R. Spectroscopy. Polymer, 34, 328-332, 1993.
    [156] A. J. Motheo, E. C. Venancio, and L. H. C. Mattoso; Polyaniline Synthesized in Propylene Carbonate Medium in the Presence of Di- and Tri-Chloroacetic Acids. Part I. Polymer Growth Studies. Electrochim. Acta, 43, 755-762, 1998.
    [157] H. Daifuku, T. Kawagoe, T. Matsunaga, N. Yamamoto, T. Ohsaka, and N. Oyama; Quartz Crystal Microbalance Study on Redox Reaction Mechanism of Polyaniline. Synth. Met., 43, 2897-2900, 1991.
    [158] T.-H. Lin, and K.-C. Ho; A Complementary Electrochromic Device Based on Polyaniline and Poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells, 90, 506-520, 2006.
    [159] E. Pargoletti, A. Salvi, A. Giordana, G. Cerrato, M. Longhi, A. Minguzzi, G. Cappelletti, and A. Vertova; ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials (Basel), 10, 2020.
    [160] Z. Sun, J. Zhang, F. Ye, W. Wang, G. Wang, Z. Zhang, S. Li, Y. Zhou, and J. Cai; Vulcanization Treatment: An Effective Way to Improve the Electrochemical Cycle Stability of Polyaniline in Supercapacitors. J. Power Sources, 443, 227246-227253, 2019.
    [161] Q. Liu, Z. Bai, J. Fan, Z. Sun, H. Mi, Q. Zhang, and J. Qiu; A Hydrogel-Mediated Scalable Strategy toward Core-Shell Polyaniline/Poly(acrylic acid)-Modified Carbon Nanotube Hybrids as Efficient Electrodes for Supercapacitor Applications. Appl. Surf. Sci., 436, 189-197, 2018.
    [162] X. Liu, N. Wen, X. Wang, and Y. Zheng; A High-Performance Hierarchical Graphene@Polyaniline@Graphene Sandwich Containing Hollow Structures for Supercapacitor Electrodes. ACS Sustainable Chem. Eng., 3, 475-482, 2015.
    [163] Q. Wu, Y. Xu, Z. Yao, A. Liu, and G. Shi; Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano, 4, 1963-1970, 2010.
    [164] J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, and Z. Wei; Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano, 4, 5019-5026, 2010.
    [165] Z. Wang, Q. E. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z. Y. Xiao, W. Hong, and H. Bai; Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Appl. Mater. Interfaces, 10, 10437-10444, 2018.
    [166] Q. Tan, Y. Xu, J. Yang, L. Qiu, Y. Chen, and X. Chen; Preparation and Electrochemical Properties of the Ternary Nanocomposite of Polyaniline/Activated carbon/TiO2 Nanowires for Supercapacitors. Electrochim. Acta, 88, 526-529, 2013.
    [167] H. Zhang, Q. Zhao, S. Zhou, N. Liu, X. Wang, J. Li, and F. Wang; Aqueous Dispersed Conducting Polyaniline Nanofibers: Promising High Specific Capacity Electrode Materials for Supercapacitor. J. Power Sources, 196, 10484-10489, 2011.
    [168] S. Zhou, H. Zhang, Q. Zhao, X. Wang, J. Li, and F. Wang; Graphene-Wrapped Polyaniline Nanofibers as Electrode Materials for Organic Supercapacitors. Carbon, 52, 440-450, 2013.
    [169] D. Kim, G. Lee, D. Kim, J. Yun, S. S. Lee, and J. S. Ha; High Performance Flexible Double-Sided Micro-Supercapacitors with an Organic Gel Electrolyte Containing a Redox-Active Additive. Nanoscale, 8, 15611-15620, 2016.
    [170] H. Zhang, J. Wang, Y. Chen, Z. Wang, and S. Wang; Long-Term Cycling Stability of Polyaniline on Graphite Electrodes Used for Supercapacitors. Electrochim. Acta, 105, 69-74, 2013.
    [171] S. Zhou, H. Zhang, X. Wang, J. Li, and F. Wang; Sandwich Nanocomposites of Polyaniline Embedded between Graphene Layers and Multi-Walled Carbon Nanotubes for Cycle-Stable Electrode Materials of Organic Supercapacitors. RSC Adv., 3, 1797-1807, 2013.
    [172] C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha, and K.-C. Ho; Porphyrin-Based Metal–Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. Commun., 58, 51-56, 2015.
    [173] C. W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha, and J. T. Hupp; Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces, 7, 28223-28230, 2015.
    [174] M. Bláha, M. Trchová, P. Bober, Z. Morávková, J. Prokeš, and J. Stejskal; Polyaniline: Aniline Oxidation with Strong and Weak Oxidants under Various Acidity. Mater. Chem. Phys., 194, 206-218, 2017.
    [175] H. Ding, M. Wan, and Y. Wei; Controlling the Diameter of Polyaniline Nanofibers by Adjusting the Oxidant Redox Potential. Adv. Mater., 19, 465-469, 2007.
    [176] L. Zhang, M. Wan, and Y. Wei; Nanoscaled Polyaniline Fibers Prepared by Ferric Chloride as an Oxidant. Macromol. Rapid Commun., 27, 366-371, 2006.
    [177] M. M. Ayad, W. A. Amer, and M. Whdan; In Situ Polyaniline Film Formation Using Ferric Chloride as an Oxidant. J. Appl. Polym. Sci., 125, 2695-2700, 2012.
    [178] A. Yasuda, and T. Shimidzu; Chemical Oxidative Polymerization of Aniline with Ferric Chloride. Polym. J., 25, 329-338, 1993.
    [179] C. Anju, and S. Palatty; Ternary Doped Polyaniline-Metal Nanocomposite as High Performance Supercapacitive Material. Electrochim. Acta, 299, 626-635, 2019.
    [180] D. A. Pethsangave, R. V. Khose, P. H. Wadekar, and S. Some; Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chem. Eng., 7, 11745-11753, 2019.
    [181] R. J. Marshall, and R. S. Forgan; Postsynthetic Modification of Zirconium Metal-Organic Frameworks. Eur. J. Inorg. Chem., 2016, 4310-4331, 2016.
    [182] H. Noh, C.-W. Kung, K.-i. Otake, A. W. Peters, Z. Li, Y. Liao, X. Gong, O. K. Farha, and J. T. Hupp; Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catal., 8, 9848-9858, 2018.
    [183] Z. Li, A. W. Peters, A. E. Platero-Prats, J. Liu, C. W. Kung, H. Noh, M. R. DeStefano, N. M. Schweitzer, K. W. Chapman, J. T. Hupp, and O. K. Farha; Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. J. Am. Chem. Soc., 139, 15251-15258, 2017.
    [184] H. Noh, Y. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuno, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha; An Exceptionally Stable Metal-Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. J. Am. Chem. Soc., 138, 14720-14726, 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE