簡易檢索 / 詳目顯示

研究生: 林奕儒
Lin, Yi-Ru
論文名稱: 以微波水熱法合成之Bi2WO6 /BiOCl光觸媒粉末降解抗生素
Microwave assisted hydrothermal synthesis of Bi2WO6 / BiOCl for antibiotic degradation
指導教授: 申永輝
Shen, Yong-hui
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: Bi2WO6/BiOCl複合材料異質結構光觸媒抗生素降解微波水熱法
外文關鍵詞: Bi2WO6/BiOCl composite material, heterostructure, photocatalyst, antibiotic degradation, microwave hydrothermal method
相關次數: 點閱:67下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,透過微波水熱法成功合成Bi2WO6/BiOCl異質結構複合材料光觸媒。並以XRD、FE-SEM、光催化降解實驗、UV/VIS-DRS、PL以及BET分析材料的組成成分、表面形貌、在模擬日光下對CIP的降解效率、對可見光的吸收能力、電荷載子生命週期以及比表面積大小,再由這些結果推測Bi2WO6/BiOCl此材料的光催化反應機制。
    從研究實驗結果可看出,在形成Bi2WO6/BiOCl異質結構後可以使能隙下降、提高電荷載子的生命週期以及增加光觸媒粉末之比表面積,有效提升對CIP的降解效果。且在降解溶於去離子水中的10 ppm CIP溶液時,在以氙燈照射120分鐘後,能夠將CIP降解為初始濃度的96.5%,並且在後續的五次循環降解實驗中,降解率皆維持在93%以上,證明了此材料在光降解反應中具有一定的穩定性。
    在確定Bi2WO6/BiOCl能有效降解溶於去離子水中之CIP後,在本研究中也將CIP溶於自來水、溪水、海水中,再以Bi2WO6/BiOCl降解這些溶於這些水中的CIP,模擬Bi2WO6/BiOCl在自然情況下將CIP的降解情形。而從實驗結果中可看出,Bi2WO6/BiOCl對於溶於自來水及溪水中的CIP有一定的降解效果,但在降解溶於海水中之CIP時,會受海水中氯離子的影響,使降解率大幅下降。

    In this study, Bi2WO6/BiOCl heterostructure composite photocatalysts were successfully synthesized using the microwave hydrothermal method. The composition, surface morphology, degradation efficiency of CIP under simulated sunlight, visible light absorption capacity, charge carrier lifetime, and specific surface area of the materials were analyzed using XRD, FE-SEM, photocatalytic degradation experiments, UV/VIS-DRS, PL, and BET. Based on these results, the photocatalytic reaction mechanism of the Bi2WO6/BiOCl material was inferred.
    The experimental results revealed that the formation of the Bi2WO6/BiOCl heterostructure resulted in a decreased band gap, enhanced charge carrier lifetime, and increased specific surface area of the photocatalytic powder, leading to an improved degradation efficiency for CIP. When degrading a 10 ppm CIP solution in deionized water under xenon lamp irradiation for 120 minutes, the CIP concentration was reduced to 96.5% of the initial concentration. Furthermore, in subsequent five-cycle degradation experiments, the degradation rate remained above 93%, indicating a certain level of stability of this material in photocatalytic degradation reactions.
    After confirming the effective degradation of CIP in deionized water by Bi2WO6/BiOCl, the study also investigated the degradation of CIP dissolved in tap water, river water, and seawater using Bi2WO6/BiOCl, aiming to simulate the degradation of CIP by Bi2WO6/BiOCl under natural conditions. The experimental results showed that Bi2WO6/BiOCl had a certain degradation effect on CIP dissolved in tap water and river water. However, when degrading CIP dissolved in seawater, the degradation rate was significantly reduced due to the presence of chloride ions in seawater.

    摘 要 I Abstract II 致 謝 IX 目 錄 XII 圖目錄 XIII 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 5 2-1 抗生素汙染問題及處理方式 5 2-1-1 吸附 5 2-1-2 生物降解 6 2-1-3 高級氧化法 7 2-2 氧化物半導體光觸媒 10 2-2-1 鉍系光觸媒 10 2-2-2 摻雜 12 2-2-3 異質結構 12 2-3 合成方法 20 2-3-1 溶膠凝膠法 23 2-3-2 水熱法 23 2-3-3 微波水熱法 23 第三章 研究方法與實驗流程 26 3-1 實驗架構 26 3-2 實驗材料與設備 27 3-2-1 實驗藥品列表與說明 28 3-2-2 實驗儀器設備原理與用途說明 29 3-3 實驗流程 40 3-3-1 合成Bi2WO6/BiOCl光觸媒粉末 40 3-3-2 粉末成分及表面形貌分析 41 3-3-3 光降解效率分析 41 3-3-3 光觸媒粉末分析 41 3-3-3 實際應用 42 第四章 結果與討論 43 4-1 樣品粉末基本性質分析 Part 1 43 4-1-1 XRD分析 43 4-1-2 FE-SEM分析 44 4-1-3 光催化降解實驗 47 4-2 樣品粉末基本性質分析 Part 2 50 4-2-1 XRD分析 50 4-2-2 FE-SEM分析 51 4-2-3 光催化降解實驗 52 4-3 光觸媒特性分析 55 4-3-1 UV/VIS-DRS 55 4-3-2 Photoluminescence 60 4-3-3 BET 60 4-4 實際應用 63 4-4-1 降解自來水、溪水、海水中的CIP 63 4-4-2 FT-IR 66 4-4-3 海水中的陰離子 66 第五章 結論 70 Reference 72

    1. Lyu, J., et al., Antibiotics in soil and water in China-a systematic review and source analysis. Environ Pollut, 2020. 266(Pt 1): p. 115147.
    2. Sorinolu, A.J., et al., Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. Chemosphere, 2021. 265: p. 129032.
    3. Wei, Z., J. Liu, and W. Shangguan, A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chinese Journal of Catalysis, 2020. 41(10): p. 1440-1450.
    4. Li, H., Y. Cui, and W. Hong, High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red. Applied Surface Science, 2013. 264: p. 581-588.
    5. Xie, M., et al., Phosphate-bridged TiO2–BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting. Journal of Alloys and Compounds, 2015. 631: p. 120-124.
    6. Konstantinou, I.K. and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14.
    7. Chen, T., et al., Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021. 42(9): p. 1413-1438.
    8. Liu, L., et al., Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance. Chemical Engineering Journal, 2021. 411.
    9. Huo, W.C., et al., Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chemical Engineering Journal, 2019. 361: p. 129-138.
    10. Wang, L., et al., pH-induced hydrothermal synthesis of Bi(2)WO(6) nanoplates with controlled crystal facets for switching bifunctional photocatalytic water oxidation/reduction activity. J Colloid Interface Sci, 2021. 602: p. 868-879.
    11. Shiamala, L., K. Vignesh, and B.M. Jaffar Ali, Sunlight active TiO2-Bi2WO6 photocatalyst pretreatment of biomass for simultaneous hydrolysis and saccharification in bioethanol production. Fuel, 2023. 333.
    12. Kharitonova, E.P., et al., Polymorphism and properties of Bi2WO6 doped with pentavalent antimony. Journal of Alloys and Compounds, 2014. 591: p. 308-314.
    13. Zhang, Q.Q., et al., Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 2015. 49(11): p. 6772-82.
    14. Li, D. and W. Shi, Recent developments in visible-light photocatalytic degradation of antibiotics. Chinese Journal of Catalysis, 2016. 37(6): p. 792-799.
    15. García-Alonsoa, J.A., et al., Adsorption and kinetic studies of the removal of ciprofloxacin from aqueous solutions by diatomaceous earth. Desalination and Water Treatment, 2019. 162: p. 331-340.
    16. Garcia-Rodriguez, A., et al., The ability of biologically based wastewater treatment systems to remove emerging organic contaminants--a review. Environ Sci Pollut Res Int, 2014. 21(20): p. 11708-28.
    17. Ahmed, M.B., et al., Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J Hazard Mater, 2017. 323(Pt A): p. 274-298.
    18. Malakootian, M. and M. Ahmadian, Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes. Water Sci Technol, 2019. 80(3): p. 587-596.
    19. Abebe, B., H.C.A. Murthy, and E. Amare, Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. Journal of Encapsulation and Adsorption Sciences, 2018. 08(04): p. 225-255.
    20. Saheed, I.O., W.D. Oh, and F.B.M. Suah, Chitosan modifications for adsorption of pollutants - A review. J Hazard Mater, 2021. 408: p. 124889.
    21. Ahmed, M.J., Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ Toxicol Pharmacol, 2017. 50: p. 1-10.
    22. Awad, A.M., et al., Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 2019. 228.
    23. García-Alonso, J.A., et al., Adsorption and kinetic studies of the removal of ciprofloxacin from aqueous solutions by diatomaceous earth. Desalination and Water Treatment, 2019. 162: p. 331-340.
    24. Hijosa-Valsero, M., et al., Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water research, 2010. 44(12): p. 3669-3678.
    25. Lapworth, D., et al., Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental pollution, 2012. 163: p. 287-303.
    26. Alexy, R., T. Kümpel, and K. Kümmerer, Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere, 2004. 57(6): p. 505-512.
    27. Kümmerer, K., A. Al-Ahmad, and V. Mersch-Sundermann, Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere, 2000. 40(7): p. 701-710.
    28. Miklos, D.B., et al., Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review. Water Res, 2018. 139: p. 118-131.
    29. Huerta-Fontela, M., M.T. Galceran, and F. Ventura, Fast liquid chromatography–quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources. Journal of Chromatography A, 2010. 1217(25): p. 4212-4222.
    30. Merényi, G., et al., The reaction of ozone with the hydroxide ion: mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4− in superoxide dismutation. Chemistry–A European Journal, 2010. 16(4): p. 1372-1377.
    31. Merenyi, G., et al., Reaction of ozone with hydrogen peroxide (peroxone process): a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations. Environmental science & technology, 2010. 44(9): p. 3505-3507.
    32. Watts, M.J. and K.G. Linden, Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water research, 2007. 41(13): p. 2871-2878.
    33. Wang, W.-L., et al., Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species. Water Research, 2016. 98: p. 190-198.
    34. Fang, J., Y. Fu, and C. Shang, The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environmental science & technology, 2014. 48(3): p. 1859-1868.
    35. Jin, J., M.G. El-Din, and J.R. Bolton, Assessment of the UV/chlorine process as an advanced oxidation process. Water Research, 2011. 45(4): p. 1890-1896.
    36. Chaplin, B.P., Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science: Processes & Impacts, 2014. 16(6): p. 1182-1203.
    37. Quan, X., et al., Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor. Journal of Environmental Sciences, 2013. 25(10): p. 2023-2030.
    38. Fernandes, A., et al., Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. Applied Catalysis B: Environmental, 2014. 148: p. 288-294.
    39. Bejan, D., et al., Mechanistic investigation of the conductive ceramic Ebonex® as an anode material. Electrochimica Acta, 2009. 54(23): p. 5548-5556.
    40. Chaplin, B.P., D.K. Hubler, and J. Farrell, Understanding anodic wear at boron doped diamond film electrodes. Electrochimica Acta, 2013. 89: p. 122-131.
    41. Hijosa-Valsero, M., R. Molina, and J.M. Bayona, Assessment of a dielectric barrier discharge plasma reactor at atmospheric pressure for the removal of bisphenol A and tributyltin. Environmental technology, 2014. 35(11): p. 1418-1426.
    42. Mahamuni, N.N. and Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics sonochemistry, 2010. 17(6): p. 990-1003.
    43. Han, D.-H., S.-Y. Cha, and H.-Y. Yang, Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research, 2004. 38(11): p. 2782-2790.
    44. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
    45. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
    46. Lee, S.-Y. and S.-J. Park, TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013. 19(6): p. 1761-1769.
    47. Chen, P., et al., Bi‐based photocatalysts for light‐driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. EcoMat, 2020. 2(3).
    48. Wang, F., et al., A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. J Mol Model, 2014. 20(11): p. 2506.
    49. Qiu, Y., et al., Controlled synthesis of bismuth oxide nanowires by an oxidative metal vapor transport deposition technique. Advanced materials, 2006. 18(19).
    50. Huang, L., et al., Uncovering the structural stabilities of the functional bismuth containing oxides: a case study of α-Bi 2 O 3 nanoparticles in aqueous solutions. New Journal of Chemistry, 2011. 35(1): p. 197-203.
    51. Zhang, L., et al., Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Applied Catalysis A: General, 2006. 308: p. 105-110.
    52. Cheng, H., B. Huang, and Y. Dai, Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 2014. 6(4): p. 2009-2026.
    53. Chu, X., et al., Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Frontiers of Environmental Science & Engineering, 2014. 10(2): p. 211-218.
    54. Wang, J.-j., et al., Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light. Transactions of Nonferrous Metals Society of China, 2017. 27(8): p. 1794-1803.
    55. Huang, C., et al., Synthesis and application of Bi(2)WO(6) for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation. RSC Adv, 2019. 9(48): p. 27768-27779.
    56. Jiang, H., et al., Advances in Bi(2)WO(6)-Based Photocatalysts for Degradation of Organic Pollutants. Molecules, 2022. 27(24).
    57. Regmi, C., et al., Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Molecular Catalysis, 2017. 432: p. 220-231.
    58. Wu, D., et al., Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli. Applied Catalysis B: Environmental, 2016. 192: p. 35-45.
    59. Huang, H., et al., Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–-doped Bi2O2CO3. Acs Catalysis, 2015. 5(7): p. 4094-4103.
    60. Kumar, S., et al., Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Reviews, 2019. 62(3): p. 346-405.
    61. He, Z., et al., BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. The Journal of Physical Chemistry C, 2014. 118(1): p. 389-398.
    62. Yi, J., et al., In situ synthesis of Bi2O3/Bi2MoO6 heterostructured microspheres for efficiently removal of acid orange 7. Ceramics International, 2018. 44(18): p. 22102-22107.
    63. Low, J., et al., A review of direct Z‐scheme photocatalysts. Small Methods, 2017. 1(5): p. 1700080.
    64. Wang, S., et al., A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance. Applied Surface Science, 2017. 391: p. 194-201.
    65. Liu, Y., et al., Synthesis and characterization of Bi2WO6 nanoplates using egg white as a biotemplate through sol-gel method. Materials Letters, 2015. 139: p. 401-404.
    66. Liu, K., et al., Fabrication of n-n isotype BiOBr-Bi2WO6 heterojunctions by inserting Bi2WO6 nanosheets onto BiOBr microsphere for the superior photocatalytic degradation of Ciprofloxacin and tetracycline. Separation and Purification Technology, 2021. 274.
    67. Ju, P., et al., A novel calcined Bi 2 WO 6 /BiVO 4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chemical Engineering Journal, 2014. 236: p. 430-437.
    68. Liu, Y., et al., Preparation of flower-like BiOBr/Bi2WO6 Z-scheme heterojunction through an ion exchange process with enhanced photocatalytic activity. Materials Science in Semiconductor Processing, 2022. 137.
    69. Guo, M., et al., Bi(2)WO(6)-BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline. Sci Rep, 2020. 10(1): p. 18401.
    70. Komarneni, S., R. Roy, and Q. Li, Microwave-hydrothermal synthesis of ceramic powders. Materials Research Bulletin, 1992. 27(12): p. 1393-1405.
    71. Yang, G. and S.J. Park, Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials (Basel), 2019. 12(7).
    72. Schmidt, R., J. Prado-Gonjal, and E. Morán, Microwaves: Microwave Assisted Hydrothermal Synthesis of Nanoparticles. 2015. p. 561-572.
    73. Hayes, B.L., Microwave synthesis: chemistry at the speed of light. 2002: Cem Corporation.
    74. Dang Phu, N., et al., Study of photocatalytic activities of Bi2WO6/BiVO4 nanocomposites. Journal of Sol-Gel Science and Technology, 2017. 83(3): p. 640-646.
    75. Phu, N.D., et al., Study of photocatalytic activities of Bi2WO6 nanoparticles synthesized by fast microwave-assisted method. Journal of Alloys and Compounds, 2015. 647: p. 123-128.
    76. Dumrongrojthanath, P., et al., Microwave-assisted hydrothermal synthesis of BiOCl/Bi2WO6 nanocomposites for the enhancement of photocatalytic efficiency. Research on Chemical Intermediates, 2019. 45(4): p. 2301-2312.
    77. Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 1966. 15(2): p. 627-637.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE