簡易檢索 / 詳目顯示

研究生: 周育生
Chou, Yu-sheng
論文名稱: 熱感漆技術及其在渦輪引擎燃燒室設計之應用研究
Thermal Paint Techniques and Its Application on Gas Turbine Combustor Development
指導教授: 賴維祥
Lai, Wei-hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 80
中文關鍵詞: 熱電耦燃燒室渦輪引擎標準對色箱顏色校正熱感漆熱點
外文關鍵詞: thermal paint, gas turbine engine, combustor, dome, hot spot, calibration, thermocouple
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試以熱感應漆(Temperature Sensitive Paint, Thermal Paint)為工具來診斷燃燒筒燃燒時的最高溫度,以找出不均勻之熱點位置。熱感應漆為一種二維的溫度診斷工具,然而熱感應漆的溫度精度有賴於起始的溫度校正與資料庫的建立;本研究引進熱感應漆技術以診斷渦輪引擎燃燒室之流場,並建立本項技術之各項相關能量,包括熱感應漆之選用,噴塗技術,取像技術及後處理技術。本研究最後利用所開發程式,可用於熱感應漆顏色的比對與對應溫度輸出。
    整體而言,熱感應漆顯色的結果會隨著熱感應漆之厚度與烘烤(燃燒)時間以及前後處理程序而有所變異,本研究中均按照原廠建議來固定這些參數,並採取標準的攝影方法,於標準光源對色箱中取得標準顏色影像,用來比對熱感應漆與溫度之關係,就由每種顏色的RGB值作為分析工具,使得所使用的熱感應漆可辨識溫度由490℃到1250℃;此外由於攝影圖像為二維平面。本研究亦嘗試藉由燃燒筒側剖面曲線的資料來取得第三維資料,隨著搭配繪圖軟體CATIA的模型建立及修正,以達到建構三維平面座標與溫度關係分佈,建立此資料庫以利後續提供數值模擬軟體所需。
    對於溫度感應熱塗漆的特性方面也將針對其重複昇溫烘烤的溫度範圍、最高溫區域(高於1000℃)之顏色校正辨別,以及應用本研究先前建立之相關技術來說明如何實際完成引擎試車(熱流燃燒實驗)所產生的資料後分析處理流程的展現。

    Enhancement of gas turbine combustor efficiency has been put emphasis in relevant researches for gas turbine engine development. Among the recent temperature measurements, the thermocouples and thermocouple rakes are usually utilized no matter on stationary or rotary parts, such as the turbine blade or the centrifugal compressor. Compared to their restrained measuring range and rigmarole wiring, Thermal Paints, also known as Temperature Sensitive Paint, provide a simple, effective and economical way to obtain a permanent visual record of the peak temperature distribution, including surrounding thermal gradient, over the surface of components. They could be applied to components with even the most complex surface shapes and do not modify the thermal behaviour of a component during testing. In this study, the thermal paint is successfully applied into the temperature measurement from 490℃ to 1250℃ for applications of gas turbine engine tests, and also has been verified its calibrated colour changes. Moreover, a process including coating thickness, curing procedures, stoving duration and photographic sensitivity is developed here as well. Consequently a method of RGB analysis is executed on the development of calibrated colours by stoving the nickel-based alloy specimens in the oven from 490℃ to 1250℃ respectively in this research as well.

    ABSTRACT I ABSTRACT IN CHINESE II ACKNOWLEDGEMENTS XIII CONTENTS xiv LIST OF TABLES xvi LIST OF FIGURES xvii CHAPTER I INTRODUCTION 1 1.1 Necessity for wall temperature prediction in combustors 1 1.2 Flow within a gas turbine annular combustor 2 1.3 Wall temperature prediction 5 1.4 Thermal paints 5 1.4.1 Thermal paint families 5 1.4.2 Feature of thermal paint 9 1.5 Thermal paint analysis 11 CHAPTER II LITERATURE AND MOTIVATION 13 2.1 Literature review 13 2.1.1 Temperature sensitive paint (TSP) 13 2.1.2 Heat resistance of thermal paints 14 2.1.3 Integrated analysis with TSP and CFD 15 2.1.4 Luminescence intensity analysis 16 2.2 Motivation 16 2.2.1 Non-luminescent thermal paint 16 2.2.2 Pattern factor 17 CHAPTER III EXPERIMENTAL FACILITIES AND METHODOLOGY 19 3.1 Experimental facilities 19 3.1.1 Painting system 19 3.1.2 Furnace standing system 26 3.1.3 Thermocouple rakes 31 3.1.4 Digital image acquisition systems 34 3.1.5 Material 36 3.2 Methodology 37 3.2.1 Experimental factors 37 3.2.2 Paint coating 37 3.2.3 Specimen Stoving 37 3.2.4 Digital Image Analysis 38 3.2.5 RGB readings 39 3.3 Supplements for developing isotherm mapping 41 3.3.1 Background settings 41 3.3.2 Three dimensional curve redevelopment 41 CHAPTER IV RESULTS AND DISCUSSIONS 43 4.1 Thickness Test 43 4.2 Developments of calibrated colour changes on specimens 45 4.3 Temperature Gradient Test 48 4.3.1 Single-ended heating 48 4.3.2 Open flaming heating 50 4.3.3 Defects of paint colour changes 52 4.4 Isotherm Plotting 56 4.4.1 Standard derivation determination 56 4.4.2 Temperature distribution on turbine blades 60 4.4.3 Comparisons with thermocouple rakes 64 4.4.4 Pattern factor estimation 67 4.4.5 Hotspots or hot streak detections 70 CHAPTER V CONCLUSIONS 72 CHAPTER VI FUTURE WORKS 75 REFERENCES 76 APPENDIX A SOP FOR PAINTING THERMAL PAINT 78 APPENDIX B PRODUCTS OF TMC LTD 79 VITA 80

    Campbell B. (1993), Temperature sensitive fluorescent paints for aerodynamics applications. MS Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN
    Campbell B., Liu T., Sullivan J. P. (1992) Temperature measurement using fluorescent molecules. In: Sixth Int Symp Appl Laser Techniques Fluid Mech, Lisbon, Portugal
    Cattafesta L. N., Moore J. G. (1995) Uncertainty estimates for luminescent temperature sensitive paint intensity measurements. AIAA Paper 95-2193
    Doebelin Ernest O. (1990) Measurement Systems, 4th ed. McGraw-Hill.
    Dean Baker H., E. A. Ryder, N. H. Baker (1975) Temperature Measurement in Engineering. Omega Press
    Frank P. Incropera, David P. DeWitt (2001) Fundamentals of Heat and Mass Transfer. 5th edn. John Wiley & Sons
    Jack D. Mattingly (1996) Elements of Gas Turbine Propulsion. McGraw-Hill
    Jean Gallery, Martin Gouterman, James Callis, Gamal Khalil, Blair McLachlan, James Bell (1993) Luminescent Thermometry for Aerodynamic Measurements. Rev. Sci. Instrum. 65 (3)
    Liu T., Campbell B., Sullivan J. P. (1995) Accuracy of temperature-sensitive fluorescent paint for heat transfer measurements. AIAA Paper 95-2042
    Liu T., Johnston R., Torgerson S., Fleeter S., Sullivan J. P. (1997a) Rotor blade pressure measurement in a high speed axial compressor using pressure and temperature sensitive paints. AIAA Paper 97-0162
    Liu T., Campbell B., Bruns S., Sullivan J. P. (1997b) Temperature- and Pressure-sensitive luminescent paints in aerodynamics. Applied Mechanics Reviews 50(4): 227-246
    Mark D. Turrell, Phillip J. Stopford, Khawar J. Syed, Ecoghan Buchanan (2004) CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor. Proceeding of ASME Turbo Expo 2004, Power for Land, Sea, and Air, ASME paper GT2004-53112

    Mats Annerfeldt, Sergey Shukin, Mats Björkman, Agne Karlsson, Anders Jönsson, Elena Svistounova (2003) GTX 100 Turbine Section Measurement Using A Temperature Sensitive Crystal Technique. A Comparison with 3D Thermal and Aerodynamic Analyses. Demag Delaval Industrial Turbomachinery AB, Finspong, Sweden.
    M. P. Hamner, T. G. Popernack, Jr., L. R. Owen, R. A. Wahls (2002) Using Temperature Sensitive Paint Technology, 40th Aerospace Sciences Meeting & Exhibit, AIAA-2002-0742.
    Patrick Marchand (1999) Graphics and GUIs with MATLAB. 2nd edn. CRC Press
    Penzig F. (1939) Temperature-Indicating Paints. Zeitschrift des Vereines Deutscher Ingenieure, Vol. 83, No. 3
    Sami Alaruri, Dawn McFarland, Andrew Brewington, Mark Thomas, Norm Sallee (1994) Development of a Fiber-Optic Probe for Thermographic Phosphor Measurements in Turbine Engines. 30th AIAA/ASME /SAE/ASEE Joint Propulsion Conference, AIAA-94-2987.
    Taylor J. R., W. W. Wagner (1981) Improved Combustor Domes Designed for Hot Streak Reduction. AIAA/SAE/ASME 17th Joint Propulsion Conference, AIAA-81-1352
    T. Liu, J. P. Sullivan (2005) Pressure and Temperature Sensitive Paints, Springer.

    下載圖示 校內:2012-08-15公開
    校外:2012-08-15公開
    QR CODE