簡易檢索 / 詳目顯示

研究生: 張維軒
Chang, Wei-Hsuan
論文名稱: 以高溫超導塊材擄獲磁場進行磁粒子軌跡計算及觀測研究
Simulation and Observation of Magnetic Particles Trajectory in Fluids Using Bulk High Temperature Superconductor Trapped Field
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 磁藥物傳輸系統高溫超導磁場分布磁力計算磁粒子軌跡模擬
外文關鍵詞: Magnetic drug delivery system, High temperature superconductor, Magnetic field distribution, Magnetic force calculation, Magnetic particle trajectory simulation
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁藥物傳輸系統的優勢在於可以有效將藥物集中於患部避免其他區域受到藥物影響,進而降低副作用,為了解高溫超導體應用於磁藥物傳輸系統的發展潛力,本研究將透過理論計算探討不同磁場源的作用對磁粒子沉降的軌跡影響,進一步評估外加磁場源作為磁藥物傳輸系統的發展潛力。
    本研究模擬磁粒子的軌跡的基礎建立在磁粒子於外加磁場下沉降過程的受力分析,並透過理論公式計算磁粒子在過程中的運動軌跡,由於高溫超導體與永久磁鐵的最大差異在於磁場分布,故本研究重點在於將透過理論計算實際磁場源的磁場分布,並延伸計算作用於磁粒子的磁力配合沉降公式建立磁粒子軌跡計算模型,藉此探討此兩種磁場源吸引磁粒子所造成的軌跡差異,並以鐵珠沉降實驗驗證本模型預測軌跡的準確性,由結果顯示本研究所建立的磁粒子軌跡計算模型具有可信度,因此透過模型模擬不同種類磁場源下磁粒子的運動軌跡,藉由磁粒子軌跡模擬分析高溫超導體發展於磁藥物系統的優勢。
    本研究以兩種評估方式進行外加磁場源的分析,分別以靜態液體中的軌跡模擬評估外加磁場源集中磁粒子的能力以及模擬外加磁場源吸引實際靜脈中流動的磁粒子,定義臨界距離來探討外加磁場源捕獲流體中磁粒子的能力,並嘗試改變磁粒子尺寸來分析臨界距離的變化,透過軌跡模擬可以針對外加磁場源進行評估同時亦可以挑選適合尺寸的磁粒子。

    This study was divided into four parts. The first part focused on the magnetic force distribution of a high temperature superconductor and a permanent magnet. The second part involved building the magnetic particle trajectories calculation model and verifying it experimentally. The third part involved an evaluation of the ability of the external magnetic field source (i.e. HTS and PM) to concentrate and capture magnetic particles.

    We initially calculated the magnetic field distribution of the HTS and the PM from the real magnetic field distribution and then calculated the magnetic force distribution. Based on the results, the magnetic force distributions are quite different.

    The magnetic particle trajectories calculation model was based on a force analysis of the magnetic particles. From the verified experimental results, we found that the experimental trajectories and calculated trajectories matched.

    Using a magnetic particle trajectories simulation, the external magnetic field source was evaluated using two methods. The first one showed that the HTS had better ability to concentrate the particles, and the second one showed that the PM had better capture ability.

    摘要 I 誌謝 VI 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 2 第二章 理論基礎與文獻回顧 4 2-1 磁藥物傳輸系統 4 2-1.1 臨床實驗[4, 5] 4 2-1.2 動物實驗[6-8] 6 2-2 磁藥物傳輸所面臨的問題 16 2-2.1 人體內深層傳輸[9-12] 16 2-3 磁藥物傳輸外加磁場源選擇 19 2-3.1 永久磁鐵[13] 19 2-3.2 電磁線圈[14] 20 2-3.3 高溫超導體[15-20] 20 2-4 磁粒子沉降軌跡模擬 33 2-4.1 磁化理論[21] 33 2-4.2 Basset-Boussinesq-Oseen方程式 35 2-4.3 磁力計算[24, 25] 37 第三章 實驗方法及步驟 41 3-1 實驗材料 41 3-2 YBCO超導塊材製備 41 3-2.1 超導前驅粉末製備 41 3-2.2 成長單晶粒超導塊材 42 3-3 軌跡計算模型 42 3-3.1 磁場分布量測及計算 43 3-3.2 磁粒子軌跡計算模型驗證 43 3-3.3 以模型分析外加磁場源集中藥物能力 43 3-3.4 以軌跡計算模型模擬磁藥物傳輸系統 44 3-4 實驗儀器與設備 45 第四章 實驗結果與討論 53 4-1 外加磁場源磁性質量測及計算 53 4-1.1 永久磁鐵磁場分布計算 53 4-1.2 高溫超導體磁場分布計算 54 4-1.3 磁場梯度及磁力分布的計算及比較 55 4-2 磁場下磁粒子之軌跡計算模型 59 4-2.1 軌跡計算模型建立 59 4-2.2 永久磁鐵下磁粒子沉降軌跡驗證 60 4-2.3 高溫超導體下磁粒子沉降軌跡驗證 61 4-3 外加磁場源藥物集中能力評估 64 4-3.1 靜態液體中磁粒子於永久磁鐵下的軌跡模擬 64 4-3.2 靜態液體中磁粒子於高溫超導下的軌跡模擬 65 4-3.3 外加磁場源集中能力分析 65 4-4 外加磁場源捕獲距離評估 72 4-4.1 血管內磁粒子於永久磁鐵下的軌跡模擬 72 4-4.2 血管內磁粒子於高溫超導體下的軌跡模擬 74 4-4.3 血管內磁粒子軌跡模擬差異 74 第五章 結論 84 參考文獻 87

    [1] S. Mitragotri and J. Lahann, "Materials for drug delivery: innovative solutions to address complex biological hurdles," Adv Mater, vol. 24, no. 28, pp. 3717-23, Jul 24 2012.
    [2] A. E. S. Kenneth J. Widder, 3 and David F. Ranney4, "In Vitro Release of Biologically Active Adriamycin by Magnetically Responsive Albumin Microspheres," CANCER RESEARCH, vol. 40, 1980.
    [3] B. Shapiro, "Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body," J Magn Magn Mater, vol. 321, no. 10, p. 1594, May 1 2009.
    [4] A. S. Lübbe et al., "Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors," Cancer research, vol. 56, no. 20, pp. 4686-4693, 1996.
    [5] M. W. Wilson et al., "Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients," Radiology, vol. 230, no. 1, pp. 287-293, 2004.
    [6] C. P. Scott Goodwin, Carl Hoh, Craig Bittner, "Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy," Journal of Magnetism and Magnetic Materials vol. 194, pp. 132-139, 1999.
    [7] M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, "Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver—magnetic nanoparticles in cancer treatment," Journal of Surgical Research, vol. 175, no. 1, pp. 35-43, 2012.
    [8] O. A. Mayorova et al., "Endovascular addressing improves the effectiveness of magnetic targeting of drug carrier. Comparison with the conventional administration method," Nanomedicine: Nanotechnology, Biology and Medicine, p. 102184, 2020.
    [9] M. Shamsi, A. Sedaghatkish, M. Dejam, M. Saghafian, M. Mohammadi, and A. Sanati-Nezhad, "Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy," Drug Deliv, vol. 25, no. 1, pp. 846-861, Nov 2018.
    [10] P. M. Price, W. E. Mahmoud, A. A. Al-Ghamdi, and L. M. Bronstein, "Magnetic Drug Delivery: Where the Field Is Going," Front Chem, vol. 6, p. 619, 2018.
    [11] B. Shapiro, S. Kulkarni, A. Nacev, S. Muro, P. Y. Stepanov, and I. N. Weinberg, "Open challenges in magnetic drug targeting," Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 7, no. 3, pp. 446-57, May-Jun 2015.
    [12] Y.-L. Liu, D. Chen, P. Shang, and D.-C. Yin, "A review of magnet systems for targeted drug delivery," Journal of Controlled Release, vol. 302, pp. 90-104, 2019.
    [13] D. C. Lester C Barnsley1, 2, Miles Aron1 and Eleanor Stride1, "Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays," Institute of Physics and Engineering in Medicine, 2017.
    [14] A. K. Hoshiar, T.-A. Le, F. U. Amin, M. O. Kim, and J. Yoon, "Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels," Journal of Magnetism and Magnetic Materials, vol. 427, pp. 181-187, 2017.
    [15] M. M. Masaru Tomita, "High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K," NATURE, vol. 421, 2003.
    [16] J. H. Durrell et al., "A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel," Superconductor Science and Technology, vol. 27, no. 8, 2014.
    [17] S.-i. Takeda, F. Mishima, S. Fujimoto, Y. Izumi, and S. Nishijima, "Development of magnetically targeted drug delivery system using superconducting magnet," Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 367-371, 2007.
    [18] F. Mishima, Y. Akiyama, and S. Nishijima, "A study on accumulation of magnetic drug in the capillary vessel of target organ using superconducting MDDS," Physica C: Superconductivity and its applications, vol. 470, no. 20, pp. 1837-1840, 2010.
    [19] K. Nakagawa, F. Mishima, Y. Akiyama, and S. Nishijima, "Study on Magnetic Drug Delivery System Using HTS Bulk Magnet," IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, pp. 4903804-4903804, 2012.
    [20] F. Mishima, K. Nakagawa, M. Chuzawa, T. Mori, Y. Akiyama, and S. Nishijima, "Precise Control of the Drug Kinetics by Non-Invasive Magnetic Drug Delivery System," IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 4400704-4400704, 2013.
    [21] I. G. Chen, J. Liu, R. Weinstein, and K. Lau, "Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field," Journal of applied physics, vol. 72, no. 3, pp. 1013-1020, 1992.
    [22] D. D. G. b. M. Jalaal a, *, G. Ahmadi c, "Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media," Advanced Powder Technology, 2009.
    [23] J. Ferreira, M. Duarte Naia, and R. Chhabra, "An analytical study of the transient motion of a dense rigid sphere in an incompressible Newtonian fluid," Chemical Engineering Communications, vol. 168, no. 1, pp. 45-58, 1998.
    [24] Y. Yan, Y. Ma, and J. Liu, "Analysis and Correction of the Magnetometer's Position Error in a Cross-Shaped Magnetic Tensor Gradiometer," Sensors (Basel), vol. 20, no. 5, Feb 27 2020.
    [25] H. Xiaotao, C. Quanliang, and L. Liang, "Design and Evaluation of Three-Dimensional Electromagnetic Guide System for Magnetic Drug Delivery," IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, pp. 4401404-4401404, 2012,.
    [26] 施昱丞, "以高溫超導技術在磁藥物傳輸系統的研究," 國立成功大學材料科學及工程學系碩士論文, 2015.
    [27] Y. Hirota, Y. Akiyama, Y. Izumi, and S. Nishijima, "Fundamental study for development magnetic drug delivery system," Physica C: Superconductivity, vol. 469, no. 15-20, pp. 1853-1856, 2009.
    [28] S. Sharma, V. K. Katiyar, and U. Singh, "Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field," Journal of Magnetism and Magnetic Materials, vol. 379, pp. 102-107, 2015.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE