簡易檢索 / 詳目顯示

研究生: 陳亞倫
Chen, Ya-Lun
論文名稱: 高效益苯並三唑類紫外線吸收劑之實驗與理論計算探討
Theoretical and Experimental Studies of Highly Efficient UV Absorbers Derived from 2-(2’-Hydroxyphenyl)benzotriazole
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 180
中文關鍵詞: 密度泛涵理論計算分子內氫鍵紫外光吸收劑激發態分子內質子轉移分子軌域熱可塑性塑膠
外文關鍵詞: Tinuvin-P, Tinuvin-PS, Tinuvin-329, (Excited-State Intramolecular Proton-Transfer) ESIPT, (Intramolecular Hydrogen Bonding) IMHB, UV absorber, Density Functional Theory (DFT), Thermoplastic polyurethane (TPU), Molecular Orbital Electron Density
相關次數: 點閱:206下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分別利用起始物2-(2’-羥基-5’-甲基苯基)苯並三唑(2-(2’-hydroxy-5-methylphenyl) benzotriazole)、2-(2’-羥基-5’-異丁基苯基)苯並三唑(2-(2’-hydroxy-5-tertbutylphenyl)benzotriazole)、2-(2’-羥基-5’-異辛基苯基)苯並三唑(2-(2-hydroxy-5-tertoctylphenyl) benzo-triazole)為主架構,使用Gaussion03計算出具有潛力的新型紫外線吸收劑,包括分子結構最佳化、可能的電子光譜預測,並且合成出一系列新型的紫外線吸收劑。溶於氯仿中,以溶液態測定衍生物的紫外線吸收光譜,探討其在溶液態時的紫外線吸收,並與化合物2-(2’-羥基-5’-甲基苯基)苯並三唑相比較,用理論計算採用密度泛涵理論計算驗證並解釋實驗結果,利用分子軌域的電子躍遷來分析化合物在激發態進行分子內質子轉移傾向,來解釋實驗的紫外線吸收峰來自何種能階之電子躍遷。根據紫外線吸收光譜結果,證明在苯基3號位上具有碳氧共軛雙鍵的取代基,能加強提升短波長吸收,提升分子內氫鍵強度可有效提升長波長吸收,在苯基5號位上不同碳鏈長度對於紫外線吸收效果也會有不同。本實驗也開發出新的液體紫外線吸收劑(36)與(37)。接著我們利用開發出的新型紫外線吸收劑2-(2’-羥基-3’-乙醯苯-5’-甲基苯基)苯並三唑(3)溶於不同溶劑中測其紫外線吸收光譜的改變,來解釋不同溶劑對於紫外線吸收劑的影響。選擇化合物(40)加入熱可塑性聚胺基塑膠體中,發現此新型紫外線吸收劑對於UV-A與UV-C有抵抗紫外線的保護效果。

    In the present, we used 2-(2’-hydroxy-5’-methylphenyl) benzotriazole, 2-(2’-hydroxy-5’-tertbutylphenyl)benzotriazole, and 2-(2’-hydroxy-5’-tertoctylphenyl) benzotriazole as starting material, respectively, to synthesis various derivatives. Each of the derivatives was dissolved in chloroform, respectively, to measure UV absorption. Spectroscopic measuremenrs of UV absorption in solution state and theoretical calculations with density functional theory (DFT) method were employed to characterize these UV absorbers.
    According to the results of UV absorption, it was found compounds with eletron-withdrawing group in ortho position related to the 2-hydroxyl group, could promote the strength of intramolecular hydrogen bonding. Moreover, compound which has CO double bond groups at this position also can strengthen the conjugation system and promote the intensity of UV absorption in UV-B and UV-C. This experiment also developed the new liquid ultraviolet absorbers theoretically and using calculations density functional theory (DFT) methods to verify and explain the experimental results. Various solevents was emplyer to measure the UV absorption to study the influence of solvent property to the absorption. Compound (40) was add to Thermoplastic polyurethane (TPU) to test the protection ability of UV absorbers, and the results showed that it has great protection ability for UV radiation.

    Abstract................I Acknowedgement..............VII Contents VIII Chapter 1. Introduction...........1 1-1 Ozone layer...............1 1-2 Ultraviolet light.............2 1-3 Consequences of ozone layer depletion.....3 1-4 UV Absorber...............5 Chapter 2. Theory and Literature Review.......7 2-1 Benzotriazole UV absorber.........7 2-2 The different functions of study........8 2-2-1 Macromolecular............8 2-2-2 Multifunctional.............9 2-3 Principle of UV Absorber.........10 2-4 The principle of UV-VIS absorption spectrum....11 2-5 Theoretical calculation..........14 2-5-1 ab initio method ............14 2-5-2 Semi-empiriical method ........15 2-5-3 Molecular mechanics, MM .......16 2-5-4 HF (Hatree-Fock) Theory .......17 2-6 Quantum Chemistry ...........19 2-6-1 Density Function Theory, DFT ......19 2-6-2 B3LYP Theory...........21 2-6-3 Basis set ...........22 2-6-4 Nature Bond Orbital, NBO ......24 2-7 Research propose.............25 Chapter 3. Experimental Section........27 3-1 Instrumentation............27 3-2 Materials..............28 3-3 Synthesis..............31 Chapter 4. Results and discussion........68 Chapter 5. Solvent effect...........100 Chapter 6.The application of UV absorber......105 Chapter 7. Conclusions............111 Chapter 8. X-ray structure determination......114 Reference...............123 Appendix................127

    1. Fortey, Richard.(1999),A Natural History of the First Four Billion Years of Life on Earth, New York: Vintage.
    2. NASA Facts Archive". Retrieved 2011-06-09.
    3. Science: Ozone Basics". Retrieved 2007-01-29.
    4. Reconstruction of Paleobehavior of Ozonosphere Based on Response to UV-B Radiation Effect in Dendrochronologic Signal". Atmospheric Radiation Measurement, USA.
    5. R.P. Kane, Int. J. Climatol. 457 (1998) 18.
    6. Trichet, V.; Grelier, S.; Castellan, A.; Choudhury, H. Stephen Davidson, R., Journal of Photochemistry and Photobiology A: Chemistry 1996, 95 (2), 181-188.
    7. Valet, A., Progress in Organic Coatings 1999, 35 (1-4), 223-233.
    8. Lee, B.-H.; Kim, H.-J., Polymer Degradation and Stability 2006, 91 (5), 1025-1035.
    9. Salinaro, A.; Emeline, A. V.; Zhao, J.; Hidaka, H.; Ryabchuk, V. K.; Serpone, N., Pure and Applied Chemistry 1999, 71 (2).
    10. Serpone, N.; Salinaro, A., Pure and Applied Chemistry 1999, 71 (2).
    11. Morabito, K.; Shapley, N. C.; Steeley, K. G. International journal of cosmetic science 2011, 33 (5), 385-90.
    12. Sunscreen drug products for over-the-counter human use, Final Monograph, Federal
    Register 64 27666, US Food and Drug Administration,Rockville, MD, 2000.
    13. Nick Serpone , Daniele Dondi, Angelo Albini, Inorganica Chimica Acta 360 (2007)
    794–802.
    14. Fujita; Taira, Y.; Kondo, A; Nozomi, A. Takashi; Sumitomo Chemical Company,
    Limited, Kyoto Chemical Company, Ltd 1978; Vol. US4077971.
    15. Adler; S., A.; Ciba-Geigy Corporation 1979; Vol. US4141903
    16. Pei, K.; Cui, Z.; Chen, W., Journal of Molecular Structure 2013, 1032, 100-104.
    17. Nugent, W. A.; Harlow, R. L., Journal of the American Chemical Society 1994, 116 (14), 6142-6148.
    18. Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys.
    1968,49, 4852-4856.
    19. Slater, J. C. The Self-Consistent Field for Molecular and Solids Quantum Theory of Molecular and Solids.
    20. Vogl, O.; Albertsson, A. C.; Janovic, Z., Polymer 1985, 26 (9), 1288-1296.
    21. Aultz, Danied E. Development on poiymeric benzotriazole. Spec. Chem. 1996, 12 (2): 71-74
    22. Aultz, Danied E. Development on poiymeric benzotriazole. Spec. Chem. 1996, 12 (2): 171- 182
    23. Leppard, D.; Hayoz, P.; Schäfer, T.; Vogel, T.; Wendeborn, F., CHIMIA International Journal for Chemistry 2002, 56 (5), 216-224.
    24. Stein, M.; Keck, J.; Waiblinger, F.; Fluegge, A. P.; Kramer, H. E. A.; Hartschuh, A.; Port, H.; Leppard, D.; Rytz, G., The Journal of Physical Chemistry A 2002, 106 (10), 2055-2066.
    25. Maliakal, A.; Lem, G.; Turro, N. J. Ravichandran, R.; Suhadolnik, J. C.; DeBellis, A. D.; Wood, M. G.; Lau, J., The Journal of Physical Chemistry A 2002, 106 (34), 7680-7689.
    26. Murashige, R.; Hayashi, Y.; Ohmori, S.; Torii, A.; Aizu, Y.; Muto, Y.; Murai, Y.; Oda, Y.; Hashimoto, M., Tetrahedron 2011, 67 (3), 641-649.
    27. Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New
    Jersey: Prentice Hall. p. 403.
    28. Lee, B.-H.; Kim, H.-J., Polymer Degradation and Stability 2006, 91 (5), 1025-1035.
    29. A. E. Reed and F. Weinhold, 78 (1983) 4066-73.
    30. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys., 83 (1985) 735-46.
    31. A.E. Reed, F. Weinhold, J. Chem. Phys., 83 (1985) 1736-40.
    32. J. Chem. Phys., 78 (1983), pp. 4066–4073
    33. A.E. Reed, R.B. Weinstock, F. Weinhold (1985).
    34. J. Chem. Phys., 83 (1985), pp. 735–746
    35. Liu, G.-B.; Zhao, H.-Y.; Yang, H.-J.; Gao, X.; Li, M.-K. Advanced Synthesis & Catalysis 2007, 349 (10), 1637-1640.
    36. Forés, M.; Scheiner, S., Chemical Physics 1999, 246 (1-3), 65-74.
    37. J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, third ed., Gaussian, Inc., Pittsburgh, PA, 2009.
    38. Pei, K.; Li, F.; Dong, X.; Zheng, X., Journal of Raman Spectroscopy 2011, 42 (5), 1034-1038.
    39. Pei, K. M.; Ma, Y.; Zheng, X., J Chem Phys 2008, 128 (22), 224310.
    40. Falk; Robert A., C.; R., G.; Ciba-Geigy Corporation 1993; Vol. US5250698
    41. Thanki; Paragkumar Nathalal, S.; Pal, R.; Council of Scientific and Industrial Research 2001; Vol. US6307055.
    42. Jonathaans, R.; David, D. A.;Dainel, P. S.; Norihisa, D.; Francois, M.; Siba Spelecialty Chemicals Holding Inc.: 2003; Vol. WO2003/105538
    43. Kocher, C.; Weder, C.; Smith, P., J. Mater. Chem. 2003, 13 (1), 9-15.
    44. Solanky, S, S.; Desai, S.M.; Singh, R. P. 2005; Vol. US2005/14384.
    45. Ling, L.; Wei, P-H.; Fan, C-N.; Lee, Y-C.; Yang, H-L; Lee, Y-C. 2009; Vol.US2009/270632
    46. Chang, C-H. 2010; Vol. US2010/86500.
    47. Alexander, S-P.; Christine, M-E.; Horst, W.; DSM IP ASSETS BV: 2011; Vol. WO2011/86124
    48. Michael, P.; Michael, R.; Alexander, S-P.; Kesheng, Z.; DSM IP ASSETS BV: 2011; Vol. WO2011/86127.
    49. SANOFI SA2011; Vol. EP2368876.
    50. Lampman, G. M.; Pavia, D. L.;Kriz, G. S.;Vyvyan, J. R. Spectroscopy; 4th edition ed., 2010.
    51. Paterson, M. J.; Robb, M. A.; Blancafort, L.; DeBellis, A. D., J Am Chem Soc 2004, 126 (9), 2912-22.
    52. E.D. Glendening, J.K. Badenhoop, F. Weinhold, J. Comput. Chem. 19 (1998) 628.
    53. E.D. Glendening, A.E. Reed, J.E. Carpenter, F.A. Weinhold, NBO, Version 3.1 , 1995.
    54. Wiechmann, M.; Port, H.; Frey, W.; Laermer, F.; Elsaesser, T., The Journal of Physical Chemistry 1991, 95 (5), 1918-1923.
    55. McGarry, P. F.; Jockusch, S.; Fujiwara, Y.; Kaprinidis, N. A.; Turro, N. J., The Journal of Physical Chemistry A 1997, 101 (5), 764-767.
    56. Catalan, J.; Perez, P.; Fabero, F.; Wilshire, J. F. K.; Claramunt, R. M.; Elguero, J., Journal of the American Chemical Society 1992, 114 (3), 964-966.

    下載圖示 校內:2020-09-12公開
    校外:2020-09-12公開
    QR CODE