簡易檢索 / 詳目顯示

研究生: 何欣宜
Ho, Shin-yi
論文名稱: 鋼筋混凝土梁柱複合構件於高溫中、後之行為研究─梁柱接頭之承力行為
Behavior of Reinforced Concrete Beam-Column Sub-assemblage under Elevated Temperature Test ─ Behavior of Beam-Column Joint
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 高溫混凝土殘餘強度梁柱接頭火災
外文關鍵詞: fire hazard, beam-column joint, reinforced concrete, elevated temperature, residual strength
相關次數: 點閱:157下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    目前鋼筋混凝土仍為建築材料之主體,由於火災是建築物損害的一大因素,因此鋼筋混凝土結構物受火害的相關研究相當的重要。本研究之目的在探討梁柱接頭於高溫中、後之溫度變化及變形。
    本研究以一棟七層樓的建築物為討論對象,取其外柱部分的梁柱複合構件設計實尺寸試體,使用普通混凝土(NC)及自充填混凝土(SCC)兩種材料,測試工作主要分為高溫中、冷卻過程以及殘餘強度三階段,本研究並利用ANSYS套裝軟體建立電腦模型,以與實驗值相互印證。
    主要研究成果如下:
    1. SCC3試體爆裂的範圍比NC3試體廣,主要爆裂發生在梁柱接頭處的背面,深度約可達約20mm-40mm,可見部分箍筋裸露。
    2. NC3試體經過104分鐘的高溫作用,梁柱接頭內部中心處溫度約為80℃,梁柱接頭背部溫度高約600℃。SCC3試體經過180分鐘的高溫作用,梁柱接頭內部溫度較NC3試體高100℃,接頭背部約高150℃,靠近邊梁以及長梁處最高有600℃的溫差。
    3. NC3試體梁柱接頭內部頂層撓曲鋼筋所受溫度最高約為100℃,底層撓曲鋼筋最高溫度約達250℃至310℃。
    4. ANSYS模擬的溫度分佈與實驗值很接近,證明本文採用的熱學參數應屬合理。
    5. 殘餘強度測試中,NC3試體及SCC3試體的梁柱接頭因受梁載重的影響,轉動方向皆為順時針方向。NC3試體的接頭在柱載重為3920kN時有最大轉動角,約為0.48度,SCC3試體在柱載重為3500kN時有最大轉動角,約為0.39度。

    Abstract

    At present, reinforced concrete is still a main body of the building materials, and fire is a major factor which causes building damaged. Therefore, the related research of the reinforced concrete structures under fire is an important issue. It is the objective of this study to investigate the behavior of beam-column joint under elevated temperature test.

    This research takes the exterior beam-column sub-assemblage of a seven-floor reinforced concrete building to discuss. We used two kinds of materials, one was ordinary concrete (NC) and the other was self-compacting concrete (SCC). There were three stages in the tests, i.e., elevated temperature, cooling, and residual strength stages. We also used ANSYS program to build up computer model and to compare with tests.

    The primary findings according to this study are as follows:

    1. The spalling of concrete in SCC3 specimen was severer than that in NC3 specimen. The spallings of both specimens occurred at the back of joint. The depth of damage was about 20-40mm and the stirrups were partially exposed.
    2. NC3 specimen was exposed to fire 104 minutes, the center temperature of joint was about 80℃, while the back of joint was about 600℃. SCC3 specimen was exposed to fire 180 minutes, its center temperature was 100℃ higher than NC3, while the back temperature of joint was about 150℃higher, the maximum difference of temperature near the longitudinal beam and spandrel beam was about 600℃.
    3. The temperature of top flexure reinforcement in joint of NC3 specimen was about 100 ℃, while that of bottom flexure reinforcement was about 250℃-310℃.
    4. The temperature distribution predicted using ANSYS program was very close to tests, therefore, the assumed thermal parameters were reasonable.
    5. In the residual strength test, the rotation of joints’ in NC3 and SCC3 specimens were clockwise due to beam load. The highest rotation of NC3 specimen was 0.48 degrees when column load was 3920 kN, while that of SCC3 specimen was about 0.39 degrees when the column load was 3500kN.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 X 圖目錄 XII 符號表 XIX 第一章 緒論 1 1-1研究背景與目的 1 1-2研究方法 1 第二章 文獻回顧 2 2-1混凝之熱學參數 2 2-2混凝土在高溫作用下的力學性質 6 2-3鋼筋在高溫作用下的力學性質 11 2-4鋼筋混凝土構件在高溫作用下之承力行為 13 第三章 試驗規劃及試驗方法 16 3-1 梁柱複合構件試體規劃 16 3-2 試驗設備 19 3-3 量測儀器及量測方法 20 3-3-1 量測儀器 20 3-3-2 量測方法 21 3-4 試驗程序 22 第四章 數值模擬 25 4-1 數值模擬之簡介 25 4-2 熱學參數 27 4-3 梁柱複合構件之電腦模型 29 4-4 電腦模型之印證 30 第五章 結果與討論 32 5-1 高溫測試過程中梁柱接頭表面的溫度與剝落現象 32 5-1-1 試驗過程中的觀察 32 5-1-2 梁柱接頭表面的溫度 33 5-2 梁柱接頭內部溫度之變化 34 5-2-1 NC3試體與SCC3試體之比較 34 5-2-2 梁柱接頭內部溫度的實測值與預測值比較 35 5-3 撓曲鋼筋在梁柱接頭內部的溫度探討 36 5-4 高溫測試過程中梁柱接頭的轉動 38 5-5 殘餘強度測試中梁柱接頭的轉動與強度預測 39 5-5-1 加載過程中梁柱接頭的轉動角變化 39 5-5-2 梁柱接頭的殘餘強度預測 40 5-6 NC與SCC試體梁柱接頭的比較 44 第六章 結論 46 參考文獻 47

    參考文獻

    1. Kodur, V. K. R, and Sultan, M. A.“ Effect of Temperature on Thermal Properties of High-Strength Concrete,”Journal of Materials in Civil Engineering, ASCE, Vol.15, No.2, April 2003, pp. 101-107

    2. European Committee,“ Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design, ” ENV 1992-1-2:1995

    3. Ellingwood, B., and Shaver, J. R., “ Effects of Fire Reinforced Concrete Members, ” Journal of the Structural Division, ASCE, Vol. 106, No. ST11, November 1980, pp. 2151-2166

    4. ACI Committee 216,“ Guide for Determining the Fire Endurance of Concrete Elements, ” American Concrete Institute,1994

    5. Lie,T.T., and Barbaros, C., “ Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns, ” ACI Materials Journal, Vol. 88, No. 1, January-February 1991, pp. 84-91

    6. Arioz, O.,“ Effects of Elevated Temperatures on Properties of Concrete,” Fire Safety Journal, Issue 8, 2007, pp.516-522

    7. Faris, A.; Ali, N.; Gordon, S.; and Abid, A. T.,“ Outcomes of a Major Research on Fire Resistance of Concrete Columns,”Fire Safety Journal, Vol.39, 2004, pp.433-445

    8. Duthinh, D.; McGrattan, K.; and Khaskia, A.,“ Recent Advances in Fire-Structure Analysis,” Fire Safety Journal, Vol.43, 2008, pp.161-167

    9. Hertz, K. D.,“ Limits of Spalling of Fire-Exposed Concrete,” Fire Safety Journal, Vol.38, 2003, pp.103-116

    10. Nilson, A. H.“ Design of Prestressed Concrete 2/E,” Wiley, New York,1987

    11. 張朝輝,ANSYS熱分析教程與實例解析,中國鐵道出版社,北京 (2007)

    12. 博嘉科技,有限元分析軟件-ANSYS融會與貫通,中國水利水電出版社,北京 (2002)

    13. CEB-FIP, “ Design of Concrete Structure for Fire Resistance, ” Bulletin D’Information, N。 145, 1982

    14. Lin, W. M.; Lin, T. D.; and Powers-Couche, L. J. “ Microstrcture of Fire-Damaged Concrete,” ACI Materials Journal, V.93, No.3, May-June 1996, pp.199-205

    15. 中國土木水利工程學會,凝土工程設計規範之應用上冊(土木404-96),例題26-4,第2-4頁 (2007)

    16. 楊毅凡 , 「鋼筋混凝土梁柱複合構件承受高溫之行為研究 ─ 梁柱接頭之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2007)

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE