簡易檢索 / 詳目顯示

研究生: 陳雅惠
Chen, Ya-Huey
論文名稱: 探討angiostatin所調控的血管新生作用 之分子機轉
Delineation of the molecular mechanism of angiogenesis mediated by angiostatin
指導教授: 吳梨華
Wu, Li-Wha
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 107
中文關鍵詞: 血管新生
外文關鍵詞: angiostatin
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Angiostatin於1994年時,在帶有惡性之Lewis Lung Carcinoma的老鼠之尿液中被發現,並進一步被確認其可以經由抑制血管內皮細胞之生長,移動與促進血管內皮細胞產生細胞凋亡,而達到抑制血管新生的作用。已知Angiostatin包含了有plasminogen中kringle 1到4的部分(K1-4),但是近年來的研究報告指出,與angiostatin相似的分子如:kringle 1到3 (K1-3)與kringle 1到4.5 (K1-4.5)的分子,亦具有抑制血管新生的能力,甚至其抑制作用強於K1-4,然而對於angiostatin (K1-4)與angiostatin相似分子K1-3和K1-4.5對於抑制血管新生的有效性與作用機轉到目前為止並沒有清楚的報導與研究,所以首先我們利用廠商純化具有活性之angiostatin(K1-4),來探討其抑制血管新生的分子作用機轉,進一步利用重組與複製缺陷的adenovirus攜帶K1-3,K1-4與K1-4.5的cDNA,進而感染宿主細胞,感染後可以在細胞內產製K1-3,K1-4與K1-4.5蛋白,同時這些蛋白可以被分泌到細胞外的培養液中,透過收集這些細胞之培養液,進一步將其作用於血管內皮細胞,或者以直接感染血管內皮細胞後,使得K1-3,K1-4與K1-4.5蛋白可於血管內皮細胞中產製,並進而直接作用於血管內皮細胞的方式,來研究探討這些不同型之angiostatin的抑制效用與分子作用機制。目前我們發現這些不同型之angiostatin對於抑制血管內皮細胞之增生、移動、形成管狀結構、或促進血管內皮細胞產生凋亡的能力各有不同,但其分子作用之機轉大約相似。此不同型之angiostatin可以透過誘導p53、FasL蛋白之表現,及降低Akt激酶活性,並且使基因的表現失控,進而執行其抑制血管新生作用的工作,同時我們亦發現此不同型之angiostatin執行此抑制血管新生作用是需要透過angiostatin之接受器,integrin-αvβ3與ATPase synthase的協助,來完成此抑制工作。
    最透過互補DNA之微矩陣基因片的實驗(cDNA mciroarray assay),我們進一步的發現angiostatin(K1-4)相似分子K1-3和K1-4.5可以使E-selectin在mRNA上的表現量顯著的增加,尤其以K1-3更為明顯。E-selectin在血管內皮細胞中是一個重要的可被誘導的血球細胞黏著到血管內皮細胞上的貼附蛋白,而在其它的細胞中,其亦參與在細胞與細胞黏著吸附作用上,同時文獻也指出其與血管新生作用有相關性。其它之血管新生作用之抑制因子,如AGM-1470 (TNP-470)與K1-3皆可使得E-selectin在mRNA層面之表現量上升,且另一個血管新生抑制因子endostatin其執行抑制血管新生作用是需要E-selectin的存在,因此總結上述的結果,我們進一步探討E-selectin的表現是如何受到K1-3的調控及其在K1-3抑制血管新生的角色。由我們的實驗中發現內皮細胞內的E-selectin大量表現,是經由活化AP1與Ets-1轉錄因子,這些轉錄因子可以直接作用於E-selectin之啟動子,使E-selectin的mRNA表現增加進而轉錄形成蛋白,被K1-3誘導而表現的E-selectin可以進一步的移動到內皮細胞膜的lipid raft,與其它的蛋白或激酶作用,同時亦可使得JNK激酶的磷酸化增加,此磷酸化增加可以正向的使的AP1轉錄因子活性增加同時也可能讓細胞對存在有血管抑制因子產生反應。總合之,E-selectin是angiostatin於進行抗血管新生作用中,一個新的作用標的蛋白。

    Angiostatin, a circulating inhibitor of angiogenesis, is an internal fragment of plasminogen that contains the first four kringle domains (K1-4) of plasminogen. Further studies showed that angiostatin-like molecules consisting of only the first three kringle domains (K1-3) was more antiangiogenic than K1-4, and that there is the existence of a naturally occurring isoform, K1-4.5. It is not clear whether different isoforms of angiostatin utilized similar or distinct pathways to mediate anti-angiogenesis. We first examined the signaling pathway mediated by proapoptotic angiostatin, K1-4. Inductions of p53-mediated intrinsic and FasL-mediated extrinsic death signaling pathways are involved in anti-angiogenic action of K1-4. We then compared the signaling pathways and mRNA expression profiles modulated by K1-3, K1-4, and K1-4.5. Although the extent of anti-angiogenic potency might vary among different isoforms, K1-3 or K1-4.5 shared similar death pathways with those mediated by K1-4. Moreover, all three forms of angiostatin induced a similar subset of mRNA expression with some variations. The common pathways shared by K1-3, K1-4, and K1-4.5 might be used as new therapeutic targets for anti-angiogenic therapy. Among the deregulated genes, the expression of E-selectin, an adhesion molecule, was not only induced by all isoforms but also previously implicated in antiangiogenic action of endostatin. Since K1-3 had the highest ability to induce E-selectin, we then used K1-3 to study the underlying mechanism responsible for the K1-3-induced expression of E-selectin. RT-PCR and western blotting analyses confirmed the time-dependent increase of E-selectin mRNA and protein induced by K1-3. Moreover, subcellular fraction and immunofluorescence microscopy confirmed the predominant presence of K1-3-induced E-selectin in lipid raft. Promoter driven reporter assays demonstrated both AP1 and Ets-1 binding sites on the E-selectin promoter were crucial for the induction of E-selectin. EMSA and ChIp assays confirmed the in vitro and in vivo binding of AP1 complex and Ets-1. Repression of JNK, a N-terminal kinase for c-Jun, significantly suppressed the K1-3 induced expression of E-selectin, suggesting a requirement of JNK activation for induction of E-selectin. The positive involvement of E-selectin in the anti-angiogenic action of K1-3 was, respectively, confirmed by overexpression and knockdown of E-selectin. In summary, we have identified the E-selectin as a novel target for the antiangiogenic action of angiostatin.

    Contents -------------------------------------------------------------------------------------- i Figure contents ----------------------------------------------------------------------------- v Abbreviation --------------------------------------------------------------------------------- viii 中文摘要 ------------------------------------------------------------------------------------ 1 Abstract --------------------------------------------------------------------------------------- 3 Chapter 1 Introduction ----------------------------------------------------------------- 5 1-1 Blood vessels formation ---------------------------------------------------------- 5 1-2 Vasculogenesis --------------------------------------------------------------------- 5 1-3 Angiogenesis ----------------------------------------------------------------------- 6 1-4 The angiogenic switch ------------------------------------------------------------ 6 1-5 Tumor neovascularization -------------------------------------------------------- 7 1-6 Structure and function of tumor vessels ---------------------------------------- 7 1-7 Angiogenesis in non-neoplastic disease ---------------------------------------- 8 1-8 Tumor dormancy ------------------------------------------------------------------ 9 1-9 The discovery of agniostatin ----------------------------------------------------- 10 1-10 The structure of angiostatin---------------------------------------------------- 11 1-11 Individual kringle domains and angiogenesis inhibition ------------------ 12 1-12 Production of multiple forms of angiostatin -------------------------------- 12 1-13 The function of multiple forms of angiostatin ------------------------------ 13 1-14 The mechanisms whereby angiostatin execute anti-angiogenesis-------- 14 1-15 The role of E-selectin in modulation of anti-angiogenesis ---------------- 16 1-16 Signaling pathway mediated by E-selectin ---------------------------------- 16 1-17 The specific aim----------------------------------------------------------------- 18 Chapter 2 Materials and methods ------------------------------------------------------ 19 2-1 Materials ---------------------------------------------------------------------------- 19 2-2 Antibody lists ---------------------------------------------------------------------- 21 2-3 Cell culture ------------------------------------------------------------------------- 22 2-4 Cell proliferation assay ----------------------------------------------------------- 22 2-5 Apoptosis assay by flow cytometry --------------------------------------------- 22 2-6 Western blotting analysis --------------------------------------------------------- 23 2-7 RT-PCR followed by Southern blot hybridization ---------------------------- 23 2-8 Subcellular distribution of cytochrome c -------------------------------------- 24 2-9 Caspase 3 activity assay --------------------------------------------------------- 24 2-10 Establishment and titration of recombinant adenovirus ------------------- 24 2-11 Collection of conditioned media (CM) following adenoviral infection of 549 cells ------------------------------------------------------------------------------- 25 2-12 Immunoblotting of K1-3, K1-4, and K1-4.5 in the CM ------------------- 25 2-13 Cell proliferation assay with CM --------------------------------------------- 26 2-14 Cell migration ------------------------------------------------------------------- 26 2-15 Tube formation assay ---------------------------------------------------------- 26 2-16 Apoptosis assay by flow cytometry with CM ------------------------------ 27 2-17 Western blot analysis with CM ----------------------------------------------- 27 2-18 RT-PCR and Southern blot analysis ----------------------------------------- 27 2-19 cDNA microarray analysis ---------------------------------------------------- 28 2-20 HL-60 cell adhesion assay ---------------------------------------------------- 28 2-21 Transfection with lipofetamine 2000 and reporter gene assay ----------- 29 2-22 Lipid raft isolation assay ------------------------------------------------------ 29 2-23 Immunoflorescence assay ----------------------------------------------------- 30 2-24 Chromatin immunoprecipitation assay -------------------------------------- 30 2-25 Preparation of nuclear extracts ----------------------------------------------- 31 2-26 Gel electrophoretic mobility shift assays (EMSA) ------------------------ 31 2-27 SiRNA of E-selectin ---------------------------------------------------------- 32 2-28 Statistical analysis ------------------------------------------------------------- 32 Chapter 3 Results -------------------------------------------------------------------------- 33 3-1 Angiostatin inhibits the proliferation while increasing apoptosis of HUVEC serum-deprived ------------------------------------------------------------------- 33 3-2 Angiostatin increases the levels of p53 and Bax ----------------------------- 33 3-3 Angiostatin induces the release of cytochrome c into the cytosol possibly via cleavage of Bid ------------------------------------------------------------------- 34 3-4 Angiostatin promotes the activation of caspase 3 --------------------------- 35 3-5 Angiostatin both inhibited cell proliferation and induced apoptosis ------ 35 3-6 Protein levels and functions of K1-3, K1-4 and K1-4.5 in CM ------------ 36 3-7 K1-3, K1-4 or K1-4.5 induce the expression of p53, Bax, p21, and DAPK-1--------------------------------------------------------------------------- 37 3-8 Participation of FasL, c-FLIP, and caspase 8 in antiangiogenesis mediated by K1-3, K1-4 and K1-4.5 ---------------------------------------------------------- 37 3-9 Neutralization of FasL attenuated the ability of K1-3, K1-4 and K1-4.5 to induce apoptosis ----------------------------------------------------------------- 38 3-10 Attenuation of VEGF-induced phosphorylation of AKT by K1-3, K1-4 and K1-4.5 ---------------------------------------------------------------------------- 38 3-11 Decreased angiostatin-mediated apoptosis by anti- α-ATPase or anti-integrin αvβ3 antibodies ----------------------------------------------- 39 3-12 Differential regulation of gene expression mediated by K1-3, K1-4 and K1-4.5 -------------------------------------------------------------------------- 39 3-13 Increased HL-60 cell adhesion to endothelial cells by K1-3, K1-4 or K1-4.5 ------------------------------------------------------------------------------------ 40 3-14 Three forms of angiostatin (K1-3, K1-4, and K1-4.5) share similar pathway to block angiogenesis -------------------------------------------------------- 41 3-15 The expression of E-selectin in HUVEC mediated by multiple forms of angiostatin in RNA and protein level ------------------------------------- 41 3-16 The promoter activity of E-selectin in HUVEC regulated by multiple forms of angiostatin ------------------------------------------------------------------- 42 3-17 The activation of E-selectin promoter mediated by K1-3 required the AP-1 and Ets-1 ------------------------------------------------------------------------ 43 3-18 The expression of AP-1 and Ets-1 and the potential of binding to E-selectin promoter ----------------------------------------------------------------------- 44 3-19 The localization of E-selectin in lipid raft in HUVEC mediated by K1-3 ------------------------------------------------------------------------------------- 45 3-20 The signaling pathways involved in the K1-3-induced expression of E-selectin ----------------------------------------------------------------------- 45 3-21 Effects of overexpression or knockdown of E-selectin in the K1-3-mediated endothelial cell proliferation -------------------------------------------------- 46 3-22 The K1-3 increased the expression of E-selectin and then localized to lipid raft to increase the phosphorylation of JNK ------------------------------- 47 Chapter 4 Discussions -------------------------------------------------------------------- 48 References ----------------------------------------------------------------------------------- 56 Figures --------------------------------------------------------------------------------------- 66 Tables ---------------------------------------------------------------------------------------- 98 Appendix ----------------------------------------------------------------------------------- 99 Publication --------------------------------------------------------------------------------- 107 Figure contents Fig. 1 Inbition of HUVEC proliferation and increased apoptosis by angiostatin. ------------------------------------------------------------------------------------ 66 Fig. 2 Deregulation of p53 and Bax by angiostatin. ------------------------------ 67 Fig. 3 Release of cytochrome c into cytosol induced by angiostatin and increased cleavage of Bid by angiostatin. ----------------------------------------------- 68 Fig. 4 Increased FasL mRNA and activation of caspase 3 but decreased c-Flip mRNA by angiostatin. ---------------------------------------------------------- 69 Fig. 5 Angiostatin both inhibited cell proliferation and induced apoptosis. ---- 70 Fig. 6 K1-3, K1-4 or K1-4.5 inhibits proliferation, migration, and tube formation and induce apoptosis. ----------------------------------------------------------- 71 Fig. 7 K1-3, K1-4 or K1-4.5 enhances the expression of p53, p21, Bax and DAPK1. -------------------------------------------------------------------------- 73 Fig. 8 K1-3, K1-4 or K1-4.5 increases the level of FasL protein and cleavage of caspase 8 while reducing cFLIP mRNA expression. ---------------------- 74 Fig. 9 Neutralization of Fas attenuates the pro-apoptotic ability of angiostatin molecules to different extents ------------------------------------------------ 75 Fig. 10 K1-3, K1-4 or K1-4.5 attenuates the activity of AKT. ------------------- 76 Fig. 11 KI-3, KI-4 or KI-4.5 induces apoptosis in endothelial cells through both integrin-avβ3 and ATP synthase. ------------------------------------------ 77 Fig. 12 Gene deregulation mediated by K1-3, K1-4 or K1-4.5. ----------------- 78 Fig. 13 RT-PCR confrimed the gene deregulation mediated by K1-3, K1-4 or K1-4.5. ------------------------------------------------------------------------- 79 Fig. 14 Three forms of angiostatin, K1-3, K1-4 and K1-4.5, share similar pathways to inhibit angiogenesis. ------------------------------------------------------ 80 Fig. 15 E-selectin expression in HUVEC activated by K1-3 at different time course. ----------------------------------------------------------------------------------- 81 Fig. 16 The expression of E-selectin in RNA and protein levels. -------------- 82 Fig. 17 Activation of the E-selectin promoter by angiostatin. ------------------ 83 Fig. 18 Scheme diagram depicting E-selectin promoter construct used in the experiments. ------------------------------------------------------------------ 84 Fig. 19 AP1 (c-Jun) and Ets-1 are required for the induction of E-selectin promoter. ---------------------------------------------------------------------- 85 Fig. 20 Overexpression of AP-1 and Ets-1 stimulated the E-selectin promoter activity. ------------------------------------------------------------------------ 86 Fig. 21 AP-1(c-Jun) and Ets-1 activated E-selectin promoter. ------------------ 87 Fig. 22 The mRNA expression of c-Jun, c-Fos, and Ets-1 in HUVEC activated by K1-3 at different time points. ---------------------------------------------- 88 Fig. 23 The protein expression of E-selectin, AP-1 (c-Jun) and Ets-1 in HUVEC treated with K1-3. ------------------------------------------------------------ 89 Fig. 24 Specificity of the AP1 and Ets-1 binding. -------------------------------- 90 Fig. 25 AP-1 (c-Jun) and Ets-1 binding to E-selectin promoter in vivo by using ChIp assay method. ----------------------------------------------------------------- 91 Fig. 26 Lipid raft fractionation and IF of E-selectin in HUVECs mediated by K1-3. ----------------------------------------------------------------------------------- 92 Fig. 27 The phosphorylation of MEK family in HUVEC treated with K1-3. ---------------------------------------------------------------------------------- 93 Fig. 28 The expression of E-selectin in presence of kinase inhibitor. --------- 94 Fig. 29 siRNA silencing of exogenous E-selectin gene expression in 293 cells and HUVECs and endogenous in HUVEC. ---------------------------------- 95 Fig. 30 The proliferation assay of HUVEC while overexpressed or knockdown the E-selectin. ------------------------------------------------------------------- 96 Fig. 31 The K1-3 increased the expression of E-selectin and then localized to lipid raft to increase the phosphorylation of JNK. ---------------------------- 97

    1. Risau, W. Differentiation of endothelium. Faseb J 9, 926-33 (1995).
    2. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27-31 (1995).
    3. Folkman, J. & D'Amore, P.A. Blood vessel formation: what is its molecular basis? Cell 87, 1153-5 (1996).
    4. Risau, W. & Flamme, I. Vasculogenesis. Annu Rev Cell Dev Biol 11, 73-91 (1995).
    5. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-6 (1995).
    6. Fong, G.H., Rossant, J., Gertsenstein, M. & Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70 (1995).
    7. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435-9 (1996).
    8. Breier, G. & Risau, W. The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol 6, 454-6 (1996).
    9. Kim, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-4 (1993).
    10. Millauer, B., Shawver, L.K., Plate, K.H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576-9 (1994).
    11. Millauer, B. et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 56, 1615-20 (1996).
    12. Folkman, J. Cancer Medicine, 132-152 (2000).
    13. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000).
    14. Bouck, N., Stellmach, V. & Hsu, S.C. How tumors become angiogenic. Adv Cancer Res 69, 135-74 (1996).
    15. Asahara, T., Kalka, C. & Isner, J.M. Stem cell therapy and gene transfer for regeneration. Gene Ther 7, 451-7 (2000).
    16. Baish, J.W. & Jain, R.K. Fractals and cancer. Cancer Res 60, 3683-8 (2000).
    17. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3, 177-82 (1997).
    18. Hobbs, S.K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95, 4607-12 (1998).
    56
    19. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156, 1363-80 (2000).
    20. Dvorak, H.F., Nagy, J.A., Feng, D., Brown, L.F. & Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237, 97-132 (1999).
    21. Jain, R.K. et al. Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev 15, 195-204 (1996).
    22. Eliceiri, B.P. & Cheresh, D.A. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103, 1227-30 (1999).
    23. Huang, X. et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547-50 (1997).
    24. Leu, A.J., Berk, D.A., Lymboussaki, A., Alitalo, K. & Jain, R.K. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60, 4324-7 (2000).
    25. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423-5 (1997).
    26. Boulton, A.J. & Malik, R.A. Diabetic neuropathy. Med Clin North Am 82, 909-29 (1998).
    27. Semenza, G.L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8, 588-94 (1998).
    28. Pinedo, H.M., Verheul, H.M., D'Amato, R.J. & Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet 352, 1775-7 (1998).
    29. Seljelid, R., Jozefowski, S. & Sveinbjornsson, B. Tumor stroma. Anticancer Res 19, 4809-22 (1999).
    30. Schaper, W. & Ito, W.D. Molecular mechanisms of coronary collateral vessel growth. Circ Res 79, 911-9 (1996).
    31. Coussens, L.M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13, 1382-97 (1999).
    32. Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5, 1135-42 (1999).
    33. Carmeliet, P. & Collen, D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 91, 255-85 (1998).
    34. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-28
    57
    (1994).
    35. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-85 (1997).
    36. Fidler, I.J. Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 87, 1588-92 (1995).
    37. Gohongi, T. et al. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1. Nat Med 5, 1203-8 (1999).
    38. O'Reilly, M., Rosenthal, R., Sage, E. H., Smith, S., Holmgren, L., Moses, M., Shing, Y., and Folkman, J. The suppression of tumor metastases by a primary tumor. Surg. Forum 44, 474-476 (1993).
    39. Rios-Steiner, J.L., Schenone, M., Mochalkin, I., Tulinsky, A. & Castellino, F.J. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcal surface protein. J Mol Biol 308, 705-19 (2001).
    40. Mathews, II, Vanderhoff-Hanaver, P., Castellino, F.J. & Tulinsky, A. Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic Acid. Biochemistry 35, 2567-76 (1996).
    41. Chang, Y. et al. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry 37, 3258-71 (1998).
    42. Wu, T.P., Padmanabhan, K., Tulinsky, A. & Mulichak, A.M. The refined structure of the epsilon-aminocaproic acid complex of human plasminogen kringle 4. Biochemistry 30, 10589-94 (1991).
    43. Maderegger, B., Bermel, W., Hrzenjak, A., Kostner, G.M. & Sterk, H. Solution structure of human apolipoprotein(a) kringle IV type 6. Biochemistry 41, 660-8 (2002).
    44. Abad, M.C. et al. The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J Mol Biol 318, 1009-17 (2002).
    45. Ji, W.R. et al. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 247, 414-9 (1998).
    46. Ji, W.R. et al. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J 12, 1731-8 (1998).
    47. Cao, Y. et al. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 271, 29461-7
    58
    (1996).
    48. Cao, Y. et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272, 22924-8 (1997).
    49. Stathakis, P., Fitzgerald, M., Matthias, L.J., Chesterman, C.N. & Hogg, P.J. Generation of angiostatin by reduction and proteolysis of plasmin. Catalysis by a plasmin reductase secreted by cultured cells. J Biol Chem 272, 20641-5 (1997).
    50. Stathakis, P. et al. Angiostatin formation involves disulfide bond reduction and proteolysis in kringle 5 of plasmin. J Biol Chem 274, 8910-6 (1999).
    51. Lay, A.J., Jiang, X.M., Daly, E., Sun, L. & Hogg, P.J. Plasmin reduction by phosphoglycerate kinase is a thiol-independent process. J Biol Chem 277, 9062-8 (2002).
    52. Lay, A.J. & Hogg, P.J. Measurement of reduction of disulfide bonds in plasmin by phosphoglycerate kinase. Methods Enzymol 348, 87-92 (2002).
    53. Lay, A.J. et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 408, 869-73 (2000).
    54. Dong, Z., Kumar, R., Yang, X. & Fidler, I.J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801-10 (1997).
    55. Patterson, B.C. & Sang, Q.A. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272, 28823-5 (1997).
    56. Lijnen, H.R., Ugwu, F., Bini, A. & Collen, D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 4699-702 (1998).
    57. Cornelius, L.A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161, 6845-52 (1998).
    58. O'Reilly, M.S., Wiederschain, D., Stetler-Stevenson, W.G., Folkman, J. & Moses, M.A. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274, 29568-71 (1999).
    59. Gonzalez-Gronow, M., Grenett, H.E., Weber, M.R., Gawdi, G. & Pizzo, S.V. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells. Biochem J 355, 397-407 (2001).
    60. Gately, S. et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci U S A 94, 10868-72 (1997).
    59
    61. Heidtmann, H.H. et al. Generation of angiostatin-like fragments from plasminogen by prostate-specific antigen. Br J Cancer 81, 1269-73 (1999).
    62. Fortier, A.H. et al. Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate 56, 212-9 (2003).
    63. O'Reilly, M.S. et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59, 471-82 (1994).
    64. MacDonald, N.J., Murad, A.C., Fogler, W.E., Lu, Y. & Sim, B.K. The tumor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem Biophys Res Commun 264, 469-77 (1999).
    65. Soff, G.A. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev 19, 97-107 (2000).
    66. Cao, R. et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci U S A 96, 5728-33 (1999).
    67. Griscelli, F. et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci U S A 95, 6367-72 (1998).
    68. Claesson-Welsh, L. et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci U S A 95, 5579-83 (1998).
    69. Redlitz, A., Daum, G. & Sage, E.H. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res 36, 28-34 (1999).
    70. Luo, J., Lin, J., Paranya, G. & Bischoff, J. Angiostatin upregulates E-selectin in proliferating endothelial cells. Biochem Biophys Res Commun 245, 906-11 (1998).
    71. Sharma, M.R., Tuszynski, G.P. & Sharma, M.C. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem 91, 398-409 (2004).
    72. Moser, T.L. et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 96, 2811-6 (1999).
    73. Moser, T.L. et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 98, 6656-61 (2001).
    74. Moser, T.L., Stack, M.S., Wahl, M.L. & Pizzo, S.V. The mechanism of action of angiostatin: can you teach an old dog new tricks? Thromb Haemost 87,
    60
    394-401 (2002).
    75. Tarui, T., Miles, L.A. & Takada, Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem 276, 39562-8 (2001).
    76. Tarui, T., Majumdar, M., Miles, L.A., Ruf, W. & Takada, Y. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J Biol Chem 277, 33564-70 (2002).
    77. Reynolds, L.E. et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8, 27-34 (2002).
    78. Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O. & Holmgren, L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152, 1247-54 (2001).
    79. Bratt, A. et al. Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 298, 69-77 (2002).
    80. Levchenko, T., Bratt, A., Arbiser, J.L. & Holmgren, L. Angiomotin expression promotes hemangioendothelioma invasion. Oncogene 23, 1469-73 (2004).
    81. Bratt, A. et al. Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem 280, 34859-69 (2005).
    82. Nguyen, M., Strubel, N.A. & Bischoff, J. A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365, 267-9 (1993).
    83. Budson, A.E., Ko, L., Brasel, C. & Bischoff, J. The angiogenesis inhibitor AGM-1470 selectively increases E-selectin. Biochem Biophys Res Commun 225, 141-5 (1996).
    84. Yu, Y. et al. E-selectin is required for the antiangiogenic activity of endostatin. Proc Natl Acad Sci U S A 101, 8005-10 (2004).
    85. Kraling, B.M. et al. E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 148, 1181-91 (1996).
    86. Koch, A.E., Halloran, M.M., Haskell, C.J., Shah, M.R. & Polverini, P.J. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376, 517-9 (1995).
    87. Kumar, C.C. Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4, 123-31 (2003).
    88. Hu, Y., Kiely, J.M., Szente, B.E., Rosenzweig, A. & Gimbrone, M.A., Jr. E-selectin-dependent signaling via the mitogen-activated protein kinase pathway in vascular endothelial cells. J Immunol 165, 2142-8 (2000).
    89. Hu, Y., Szente, B., Kiely, J.M. & Gimbrone, M.A., Jr. Molecular events in transmembrane signaling via E-selectin. SHP2 association, adaptor protein complex formation and ERK1/2 activation. J Biol Chem 276, 48549-53 (2001).
    61
    90. Yoshida, M. et al. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J Cell Biol 133, 445-55 (1996).
    91. Yoshida, M., Szente, B.E., Kiely, J.M., Rosenzweig, A. & Gimbrone, M.A., Jr. Phosphorylation of the cytoplasmic domain of E-selectin is regulated during leukocyte-endothelial adhesion. J Immunol 161, 933-41 (1998).
    92. Kluger, M.S., Shiao, S.L., Bothwell, A.L. & Pober, J.S. Cutting Edge: Internalization of transduced E-selectin by cultured human endothelial cells: comparison of dermal microvascular and umbilical vein cells and identification of a phosphoserine-type di-leucine motif. J Immunol 168, 2091-5 (2002).
    93. Kiely, J.M., Hu, Y., Garcia-Cardena, G. & Gimbrone, M.A., Jr. Lipid raft localization of cell surface E-selectin is required for ligation-induced activation of phospholipase C gamma. J Immunol 171, 3216-24 (2003).
    94. Jaffe, E.A., Nachman, R.L., Becker, C.G. & Minick, C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-56 (1973).
    95. Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144, 891-901 (1999).
    96. Gyorffy, S., Palmer, K. & Gauldie, J. Adenoviral vector expressing murine angiostatin inhibits a model of breast cancer metastatic growth in the lungs of mice. Am J Pathol 159, 1137-47 (2001).
    97. Jih, Y.J. et al. Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 4, 313-21 (2001).
    98. Lucas, R. et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92, 4730-41 (1998).
    99. Schuler, M. & Green, D.R. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29, 684-8 (2001).
    100. Miyashita, T. & Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-9 (1995).
    101. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-32 (1997).
    102. Kluck, R.M., Bossy-Wetzel, E., Green, D.R. & Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-6 (1997).
    103. Gaidarov, I., Santini, F., Warren, R.A. & Keen, J.H. Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1, 1-7 (1999).
    104. Li, H., Zhu, H., Xu, C.J. & Yuan, J. Cleavage of BID by caspase 8 mediates
    62
    the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 (1998).
    105. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-90 (1998).
    106. Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L. & Korsmeyer, S.J. BID: a novel BH3 domain-only death agonist. Genes Dev 10, 2859-69 (1996).
    107. Volpert, O.V. et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8, 349-57 (2002).
    108. Hanford, H.A. et al. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res 63, 4275-80 (2003).
    109. Martoriati, A. et al. dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24, 1461-6 (2005).
    110. Chen, Y.H. et al. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun 310, 804-10 (2003).
    111. Veitonmaki, N. et al. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer Res 64, 3679-86 (2004).
    112. Kaneko, Y., Kitazato, K. & Basaki, Y. Integrin-linked kinase regulates vascular morphogenesis induced by vascular endothelial growth factor. J Cell Sci 117, 407-15 (2004).
    113. Osborn, L. et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59, 1203-11 (1989).
    114. Chen, Y.H. et al. Anti-angiogenesis mediated by angiostatin K1-3, K1-4 and K1-4.5. Involvement of p53, FasL, AKT and mRNA deregulation. Thromb Haemost 95, 668-77 (2006).
    115. Welter, J.F., Crish, J.F., Agarwal, C. & Eckert, R.L. Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem 270, 12614-22 (1995).
    116. Lelievre, E., Lionneton, F., Soncin, F. & Vandenbunder, B. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 33, 391-407 (2001).
    117. Smart, E.J., Ying, Y.S., Mineo, C. & Anderson, R.G. A detergent-free method
    63
    for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A 92, 10104-8 (1995).
    118. Mercer, W.E., Avignolo, C. & Baserga, R. Role of the p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Mol Cell Biol 4, 276-81 (1984).
    119. Milner, J. Forms and functions of p53. Semin Cancer Biol 5, 211-9 (1994).
    120. Jimenez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41-8 (2000).
    121. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190-5 (1997).
    122. Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290-3 (1998).
    123. Vander Heiden, M.G. & Thompson, C.B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1, E209-16 (1999).
    124. Cooper, B.C. et al. Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clin Cancer Res 8, 3193-7 (2002).
    125. Klimiuk, P.A. et al. Soluble adhesion molecules (ICAM-1, VCAM-1, and E-selectin) and vascular endothelial growth factor (VEGF) in patients with distinct variants of rheumatoid synovitis. Ann Rheum Dis 61, 804-9 (2002).
    126. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269, 26988-95 (1994).
    127. Teruyama, K. et al. Role of transcription factor Ets-1 in the apoptosis of human vascular endothelial cells. J Cell Physiol 188, 243-52 (2001).
    128. Segura, I. et al. Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. Faseb J 16, 833-41 (2002).
    129. Pollman, M.J., Naumovski, L. & Gibbons, G.H. Endothelial cell apoptosis in capillary network remodeling. J Cell Physiol 178, 359-70 (1999).
    130. Levy-Strumpf, N. & Kimchi, A. Death associated proteins (DAPs): from gene identification to the analysis of their apoptotic and tumor suppressive functions. Oncogene 17, 3331-40 (1998).
    131. Kogel, D., Prehn, J.H. & Scheidtmann, K.H. The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays 23, 352-8 (2001).
    132. Eriksson, K., Magnusson, P., Dixelius, J., Claesson-Welsh, L. & Cross, M.J. Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal
    64
    transduction pathways. FEBS Lett 536, 19-24 (2003).
    133. Morikawa, W. et al. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem 275, 38912-20 (2000).
    134. O'Reilly, M.S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2, 689-92 (1996).
    135. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-9 (2000).
    136. Chavakis, T. et al. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood 105, 1036-43 (2005).
    65

    下載圖示 校內:2011-12-27公開
    校外:2011-12-27公開
    QR CODE