簡易檢索 / 詳目顯示

研究生: 吳東陽
Wu, Tung-Yang
論文名稱: 以時空分量廻歸探討台灣地區乾旱趨勢變化
Drought trend analysis in Taiwan using spatio-temporal quantile regression
指導教授: 蕭政宗
Shiau, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 乾旱趨勢時空分量迴歸貝氏分層模式標準化降雨指數
外文關鍵詞: Drought trend, Spatio-temporal quantile regression, Bayesian hierarchical modeling, Standardized precipitation index
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區的氣候受到緯度與複雜地形之影響,降雨在空間與時間上的分布較為不均勻,隨著近年來台灣水文環境因全球氣候變遷的影響,極端氣候發生的頻率與強度增加,因此了解台灣地區乾旱變化是水資源管理上不可或缺的一環。本文以標準化降雨指數(standardized precipitation index, SPI)定義乾旱,以時空分量迴歸(spatio-temporal quantile regression)檢測氣候變量分布特性的變化,並使用貝式分層模式(Bayesian hierarchical modeling)將有關信息整合。本文選取台灣地區北、中、南、東四個區域12個雨量站,1947至2014年共68年的月雨量資料,轉換為標準化降雨指數以分析乾旱趨勢,考慮常態以下乾旱部份的分量0.01、0.05、0.1、0.15、0.2、0.3、0.4、0.5等8個分量作為代表,並使用雨量站位置之經緯度資料作為空間資訊,探討不同分量間的變化趨勢,並展示資料的時空關聯性。結果顯示台灣東南部沿海之區域與恆春半島區域皆顯示出較嚴重之乾旱趨勢,而在各月份之趨勢,選取0.05、0.15、0.3等3個分量作為表示,主要負趨勢顯示於10月至隔年2月,大致與台灣乾季時間吻合,顯示台灣乾季時,東南沿海區域與恆春半島區域處於乾季時乾旱有增加之趨勢。

    Influenced by latitude and complex topography, temporal and spatial distribution of rainfall is uneven in Taiwan. Impacts of global climate change on water resources increase substantially. Understanding drought trend is an essential component in water resources management. In this study, drought is defined by the standardized precipitation index (SPI). Spatio-temporal quantile regression is employed to detect distributional changes of hydro-climate variables. Bayesian hierarchical modeling is then used to combine related information. Three-month rainfall series from 12 rainfall gauge station are used in this study to analyze drought trend in Taiwan. Quantiles of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 for SPI as well as location (latitude and longitude) of rainfall gauge stations are used to evaluate spatial correlation of drought trends and discuss the trend on different quantiles. The results show that more severe drought trend is observed at the southeast coastal area and Hengchun peninsula. For the monthly rainfall trend analysis, only quantiles of 0.05, 0.15, and 0.3 are chosen for analysis. Significant negative trend is observed in the period of October to February, which is the dry season in Taiwan. The results indicate that the drought in the southeast coastal area and Hengchun peninsula becomes more severe.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 3 1-3 文獻回顧 3 1-4 論文架構 6 第二章 研究方法 7 2-1 標準化降雨指數 7 2-2 時空分量迴歸 11 2-3 貝式分層模式 14 第三章 研究區域與資料 17 3-1 測站概述 17 3-2 雨量資料特性概述 18 3-3 SPI乾旱資料 25 第四章 結果與討論 27 4-1 SPI乾旱趨勢分析 27 4-2 區域趨勢分析 29 4-3 乾旱頻率分析 35 4-4 各月份區域乾旱趨勢分析 38 第五章 結論與建議 69 5-1 結論 69 5-2 建議 70 參考文獻 71 附錄A 測站各月份3個月累積雨量伽瑪分布參數表 75 附錄B 測站各月份3個月累積雨量K-S檢定表 78 附錄C 測站3個月累積雨量分布與伽瑪分布比較圖 81

    汪中和,台灣降雨的長期變化及對環境的衝擊,中央研究所地球科學研究所,2004
    林佳薇,以分位數迴歸集集群分析探討台灣地區時間與空間乾旱趨勢變化,國立成功大學碩士論文,2014
    劉秀容,新竹地區乾旱特性與水資源預警指標之研究,國立交通大學碩士論文,2004
    Abarghouei, H.B., Zarch, M.A.A., Dastorani, M., Kousari, M. and Zarch, M., “The survey of climatic drought trend in Iran”, Stochastic Environmental Research and Risk Assessment, 25(6), pp. 851-863, 2011
    Barnwal, P., Kotani, K., “Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India”, Ecological Economics, pp. 95-109, 2013
    Das, P., and Ghosal, S., “Analyzing ozone concentration by Bayesian spatio-temporal quantile regression” Environmetrics, pp. 1-28, 2016
    Ferguson T.S., “Prior distribution on spaces of probability measures”, The Annals of Statistics, 2(4), pp. 615-629, 1974
    Friederichs, P. and Hense, A., “Statistical downscaling of extreme precipitation events using censored quantile regression”, Monthly Weather Review, American Meteorological Society, pp. 2365-2378, 2007
    Guttman, N. B., “Comparing the Palmer drought Index and the standardized precipitation index”, Journal of the American Water Resources Association, 34(1), pp. 113-121, 1998
    Hayes, M.J., Svoboda, M.D., Wilhite, D.A., and Vanyarkho, O.V., “Monitoring the 1996 drought using the standardized precipitation index”, Bulletin of the American Meteorological Society, 80(3), pp. 429-438, 1999
    Held, I.M., Delworth, T.L., Lu, J., Findell, K.L. and Knutson, T.R., “Simulation of Sahel drought in the 20th and 21th centuries”, Proceedings of the National Academy of Sciences of the United States of America, pp. 17891-17896, 2005
    Hao, Z., and AghaKouchak, A. “Multivariate standardized drought index: A parametric multi-index model”, Advanced in Water Resources, 57, pp. 12-18, 2013
    IPCC (2007), Climate change 2007: Synthesis report. Contribution of working groups Ⅰ,Ⅱ and Ⅲ to the fourth assessment report, Geneva, Switzerland.
    IPCC (2014), Climate change 2014: Synthesis report. Contribution of working groups Ⅰ,Ⅱ and Ⅲ to the fourth assessment report, Geneva, Switzerland.
    Lee, D. and Neocleous, T., “Bayesian quantile regression for count data with application to environmental epidemiology”, Applied Statistics, 59(5), pp. 905-920, 2010
    Ma, Z. and Fu, C., “Some evidence of drying trend over northern China from 1951 to 2004”, Chinese Science Bulletin, 51(23), pp. 2913-2925, 2006Ma, Z. and Fu, C., “Some evidence of drying trend over northern China from 1951 to 2004”, Chinese Science Bulletin, 51(23), pp. 2913-2925, 2006
    McKee, T.B., Doesken, N.J., and Kleist, J., “The relationship of drought frequency and duration of time scales.”, Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim CA, pp.179-186, 1993
    Morid, S., Smakhtin, V. and Moghaddasi, M., “Comparison of seven meteorological indices for drought monitoring in Iran”, International Journal of Climatology, 26, pp. 971-985, 2006
    Neelon, B., Li F, Burgette, L.F., and Neelon, S.E., “A spatiotemporal quantile regression model for emergency department expenditures” Statistics in Medicine, 34(17), pp. 2559-2575, 2015
    Nelsen, R., “An introduction to copulas”, New York: Springer-Verlag, 1999.
    Paulo, A.A. and Pereira, L.S., “Prediction of SPI Drought Class Transitions Using Markov Chains”, Water Resources Management, 21(10), pp. 1813-1827, 2007
    Reich, B.J., Fuentes, M. and Dunson D.B., “Bayesian spatial quantile regression”, Journal of the American Statistical Association, 106(493), pp. 6-20, 2011
    Reich, B.J., “Spatiotemporal quantile regression for detecting distributional changes in environmental processes”, Journal of the Royal Statistical Society, 61(4), pp. 535-553, 2012
    Raziel, T., Bordi, I. and Pereira, L., “Regional drought modes in Iran using the SPI: The effect of time scale and spatial resolution”, Water Resources Management, 27(6), pp. 1661-1674, 2013
    Schroder, H.K., Andersen, H.E., and Kiehl, K., “Rejecting the mean: Estimating the response of fen plant species to environmental factors by non-linear quantile regression”, Journal of Vegetation Science, 16(4), pp. 373-382, 2005
    Tareghian, R. and Rasmussen, P., “Analysis of Arctic and Antarctic sea ice extent using quantile regression”, International Journal of Climatology, 33(5), pp. 1079-1086, 2013
    Vicente-Serrano, S.M., “Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula”, Water Resources Management, 20(1), pp. 37-60, 2006
    World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2014: National Drought Management Policy Guidelines: A Template for Action (D.A. Wilhite). Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 1. WMO, Geneva, and GWP, Stockholm
    Yu, K. and Moyeed, R.A., “Bayesian quantile regression”, Statistics & Probability Letters, 54(4), pp. 437-447, 2001

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE