簡易檢索 / 詳目顯示

研究生: 蔡在宗
Tsai, Tsai-Tsung
論文名稱: 含砂水體反射率峰值對應波長偏移現象研究
A Study of the Shifting Phenomenon of the Wavelength which Relate to the Peak Reflectance of the Water Contain Solids
指導教授: 謝正倫
Shieh, Chjeng-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 光學特性數值模擬峰值偏移
外文關鍵詞: shifting of peal value, numerical simulation, optic properties
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球氣候變遷的狀況不但快速而且劇烈,嚴重考驗台灣水資源的調度,也凸顯台灣水資源發展的窘迫,而用水所衍生的問題也不再僅是「量」的問題,更是「質」的問題。目前尚未掌握含砂水體完整光學性質,致使無法藉由遙測方法快速的估算大範圍水體之含砂量變化,如要進行後續應用,勢必進行實驗以掌握必要的資訊,本研究的動機是要先行釐清部分含砂水體的光學性質,以加速後續實驗室實驗規劃與實做的進度,因此,本研究設定了下列事項做為本研究的研究目的:

    1.探討不同環境因素下,含砂水體「含砂濃度」、「反射率」與「光譜波長」三者間的關係。
    2.探討不同材料因素下,含砂水體「含砂濃度」、「反射率」與「光譜波長」三者間的關係。
    3.由模擬成果歸納適合進行含砂水體實驗研究的特定光譜波長或縮小所需要進行實驗的光譜波長區間。

    經過一連串文獻回顧、模擬設計、模擬實做、資料整理與資料分析之後,由本研究的成果進行歸納之後,可得以下結論:

    1.藉由數值模擬探索含砂水體光學特性是可行的。
    2.含砂水體當濃度發生變化時,反射率峰值所對應波長會有偏移現象。
    3.波長與懸浮泥砂濃度呈現對數-線性關係。
    4.利用反射率估算濃度是可以信賴的方法。
    5.環境因素變動,對反射率或波長與懸浮泥砂濃度的關係影響不大。
    6.懸浮泥砂種類的變動,對反射率或波長與懸浮泥砂濃度的關係影響很大。
    7.濃度在400mg/L以下,第一峰值對應的波長變化不穩定。
    8.研究泥砂光學特性時,可將波長區間鎖定在600nm~700nm之間。

    在研究的過程中,由於受到現實條件的限制,僅能就已有基本資料的材料進行模擬,也為了凸顯不同設定下的差異,因而做了必要的簡化,所以離真正要運用到複雜的真實狀況仍有許多值得努力的地方,但畢竟有了開始,希望藉此做一個起點,讓不論是對本研究有興趣或是能繼續深入研究的人,能有獲得一些可以參考的資訊。

    The globe weather changes quickly and extremely. There is a bad situation of dispatch water resource. The problems of water application were not only quantity but also quantity. We do not have enough information of optic properties of water for evaluating the change of solids concentration in wide area by remote sensing. With the purpose to accelerate the process of getting information of optic property of water, we have to make some concept clearly. This study will help. The studies setup the follow items as the goal:

    1.Explode the relationship between concentration, reflectance, and wavelength under various conditions of environment factors.
    2.Explode the relationship between concentration, reflectance, and wavelength under various conditions of material factors.
    3.Explode the very wavelength or the range of wavelength which is the best suitable for laboratory experimentation.

    After a series of processes such as paper review, case design, numerical simulation, data processes and data analysis, finally we got the conclusions:

    1.It is practicable to find out the optic properties by numerical simulation.
    2.The wavelength relates to the reflectance peak will shifting when the concentration changes.
    3.The wavelength and the concentration go with a log-linear relationship.
    4.It is reliable for evaluating the concentration by the reflectance.
    5.The changes of environment factors have less effect for the relationship between concentration, reflectance, and wavelength.
    6.The changes of material factors have great effect for the relationship between concentration, reflectance, and wavelength.
    7.The changes of wavelength become unstable when the concentration under 400mg/L.
    8.We may get information of optic properties with the wavelength within 600nm-700nm.

    Anyway, I hope someone have interest of the study will find information helpful.

    摘要 1 誌謝 1 目錄 I 表目錄 II 圖目錄 III 第一章、前言 1   1-1研究動機與目的 2   1-2前人研究 4   1-3作業流程與施行方法      12 第二章、理論依據與模擬規劃      17   2-1輻射傳輸理論介紹 19   2-2數值模擬規劃 34 第三章、模擬成果        45   3-1環境因素所造成的影響      50   3-2材料因素所造成的影響      63   3-3其他因素的探討 83 第四章、結論與建議  95 參考文獻         102 附錄 106 審查意見回覆狀況      106 自述 109

    1.李三畏 (1996), 水庫集水區之水土經理, 第二屆海峽兩岸水利科技交流研討會, 371-381.
    2.李四海, and 惲才興 (2001), 河口表層懸浮泥沙氣象衛星遙感定量模式研究, 遙感學報, 5(2), 154-160.
    3.李四海, et al. (2002), 河口懸浮泥沙濃度SeaWiFS遙感定量模式研究, 海洋學報, 24(2), 51-58.
    4.李京 (1987), 利用NOAA衛星的AVHRR資料測杭州灣海域的懸浮泥沙含量, 海洋學報, 9(1), 132-136.
    5.李炎, and 李京 (1999), 基於海面-遙感器光譜反射率斜率傳遞現象的懸浮泥沙遙感算法, 科學通訊, 44(17), 1892-1898.
    6.汪小欽, et al. (2003), 遙感在懸浮物質濃度提取中的應用-以福建閩江口為例, 遙感學報, 7(1), 54-57.
    7.徐享崑 (2000), 水資源永續發展導論, 初版 ed., 經濟部水資源局, 台北市.
    8.陳濤, et al. (1994), 懸浮泥沙濃度與光譜反射率峰值波長紅移的相關關係, 海洋學報, 16(1), 38-43.
    9.馮輝 (1987), 懸浮泥沙濃度遙感定量模式, 遙感信息, 2, 16-19.
    10.經濟部水利署 (2004), 中華民國九十三年台灣水文年報, 經濟部水利署, 台北市.
    11.經濟部水利署南區水資源局 (2006), 95年度「曾文、牡丹、高屏溪、甲仙攔河堰水質檢驗分析計畫」
    12.黎夏 (1992), 懸浮泥沙遙感定量的統一模式及其在珠江口中的應用, 環境遙感, 7(2), 106-113.
    13.韓震, et al. (2003), 懸浮泥沙反射光譜特性實驗研究, 水利學報(12), 118-121.
    14.Binding, C. E., et al. (2003), An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery, International Journal of Remote Sensing, 24(19), 3791-3906.
    15.Chen, Z., et al. (1991), The form of the relationship between suspended sediment concentration and spectral reflectance: its implication for the use of Daedalus 1268 data, International Journal of Remote Sensing 12(1), 215-222.
    16.Chen, Z., et al. (1992), Derivative Reflectance Spectroscopy to Estimate Suspended Sediment Concentration, Remote Sensing of Environment, 40, 67-77.
    17.Curran, P. J., and E. M. M. Novo (1988), The relationship between suspended sediment concentration and remotely sensed sensed spectral radiance: a review, Journal of Coastal Research, 4(3), 351-369.
    18.Doxaran, D., et al. (2002), Spectral signature of highly turbid waters Application with SPOT data to quantify suspended particulate matter concentrations, Remote Sensing of Environment, 81, 149-161.
    19.Fournier, G. R. J., Miroslaw (1999), Computer based underwater imaging analysis, Proceedings of SPIE - The International Society for Optical Engineering, 3761, 62-70.
    20.Froidefond, J. M., et al. (1993), Method for quantification of suspended sediments from AVHRR NOAA-11 satellite data, International Journal of Remote Sensing 14(5), 885-894.
    21.Fry, R. M. P. a. E. S. (1997), Absorption spectrum (380-700 nm) of pure water. II. Intergration cavity measurements., Applied Optics, 36(33), 8710-8723.
    22.Gordon, H. R. M., A. Y. (1983), Remote assessment of ocean color for interpretation of satellite visible imagery: A review New York and Berlin, Springer-Verlag (Lecture Notes on Coastal and Estuarine Studies), 4.
    23.Gregg, W. W., and K. L. Carder (1990), A Simple Spectral Solar Irradiance Model for Cloudless Maritime Atmospheres Limnology and Oceanography, 35(8), 1657-1675.
    24.Han, L., and D. C. Rundquist (1994), The response of both surface reflectance and the underwater light field to various levels of suspended sediments - Preliminary results, Photogrammetric Engineering and Remote Sensing, 60(12), 1463-1471.
    25.Harrison, A. W. and C. A. Coombes(1988), An opaque cloud cover model of sky short wavelength radiance, Solar Energy, 41(4), 387-392.
    26.Kirk, and J.T.O. (1983), Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge
    27.Li, Y., et al. (1998), An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data, Continental Shelf Research, 18, 487-500.
    28.Liu, C.-C., et al. (2002), Fast and accurate model of underwater scalar irradiance, APPLIED OPTICS, 41(24), 4962-4984.
    29.Loisel, H., and A. Morel (1998), Light scattering and chlorophyll concentration in case 1 waters: A reexamination, Limnology and Oceanography, 43(5), 847-858.
    30.Mertes, L. A. K., et al. (1993), Estimating Suspended Sediment Concentrations in Surface Waters of the Amazon River Wetlands from Landsat Images, Remote Sensing of Environment, 43, 281-301.
    31.Miller, R. L., and B. A. McKee (2004), Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing of Environment, 93, 259-266.
    32.Mobley, C. D. (1994), Light and Water - Radiative Transfer in Waters, 592 pp., ACADMEMIC PRESS, INC.
    33.Nellis, M. D., et al. (1998), Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993, Geomorphology, 21, 281-293.
    34.Prieur, L., and S. Sathyendranath (1981), An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials, Limnology and Oceanography, 26(4), 671-688.
    35.Reddy, M. A. (1993), Remote sensing for mapping of suspended sediments in Krishna Bay Estuary, Andhra pradesh, India, International Journal of Remote Sensing 14(11), 2215-2221.
    36.Ritchie, J. C., and C. M. Cooper (1988), Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data., International Journal of Remote Sensing 9(3), 379-388.
    37.Sathyendranath, S., et al. (1987), Variations in the Spectral Values of Specific Absorption of Phytoplankton, Limnology and Oceanography, 32(2), 403-415.
    38.Smith, R. C., and K. S. Baker (1981), Optical properties of clearest natural waters (200-800nm), Applied Optics, 20(2), 177-184.
    39.Stumpf, R. P., and J. R. Pennock (1989), Calibration of a general optical equation for remote sensing of suspended sediment in a moderatelyturbid turbid estuary, Journal of Geophysical Research, 94(C10), 14363-14371.
    40.USTIN, S. L. (2004), Manual of Remote Sensing, 3 ed., 768 pp., John Wiley & Sons, Hoboken, NJ

    下載圖示 校內:2012-08-22公開
    校外:2017-08-22公開
    QR CODE