| 研究生: |
凌銘鴻 Ling, Ming-Hung |
|---|---|
| 論文名稱: |
開發快溶與緩釋劑型之胰島素微針貼片 Development of insulin-loaded microneedle patches with rapid dissolving and sustained release formulations |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 糖尿病 、澱粉 、明膠 、幾丁聚醣 、胰島素 、快速溶解型微針貼片 、鑲嵌 、立方體貼片 、緩慢釋放 |
| 外文關鍵詞: | diabetes, starch, gelatin, chitosan, insulin, fast dissolving microneedle patch, embeddable, microcubes patch, sustained release |
| 相關次數: | 點閱:113 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與傳統式的皮下注射途徑相比,微針貼片於經皮給藥領域上具有潛在優勢。微針的侵入性較小,可避免刺激神經帶給患者的不適性,同時可達到與注射相似的給藥效果。本研究主要為開發具有不同釋放行為模式之高分子微針,並應用於經皮傳遞胰島素。研究分為兩部份:第一部分為利用快溶型高分子微針傳遞胰島素,取代臨床針劑給藥;第二部分則為以快溶型微針貼片包覆含有胰島素之幾丁聚醣立方體,應用於經皮緩釋胰島素,達到長效控制血糖之目的。
在第一部份之研究中,我們利用澱粉及明膠製備可溶解型微針貼片,用於快速有效地經皮傳遞胰島素。此微針穿刺皮膚5分鐘後可完全溶解,並迅速地將所包覆之胰島素傳遞至皮膚中。組織切片結果顯示,微針具有足夠的機械強度,可刺入豬皮約200 μm之深度,而活體大鼠皮膚穿刺深度則約200~250 μm,此穿刺深度不會引起明顯的皮膚刺激及疼痛感。為了評估使用可溶性微針治療糖尿病的可行性,將含有胰島素之微針固定於自製敷貼器上,進行糖尿病大鼠治療。由藥物動力學結果可得知,含有胰島素之微針的相對生物可利用率及相對藥理有效性皆約為92 %,表示胰島素包覆於微針中及釋放後仍然保持其藥理活性,具有接近皮下注射相似之降血糖效果。儲存穩定性分析證實,於25 ℃及37 ℃儲存微針1個月後,胰島素依然保有90 %以上的生物活性。這些結果證實,所開發的澱粉/明膠微針能夠穩定地包覆生物活性分子,並且具有以相對無痛、快速和方便的方式透過經皮傳遞胰島素。
第二部分之研究主要為開發可緩釋胰島素之劑型,期望可長時間穩定糖尿病患者之血糖值。將胰島素以幾丁聚醣立方體包覆後,裝載於快溶型聚乙烯醇/聚乙烯吡咯烷酮(Polyvinyl alcohol, PVA / Polyvinylpyrrolidone, PVP)微針中。當微針穿刺皮膚3分鐘後,水溶性PVA/PVP針體可完全溶解,使幾丁聚醣立方體鑲嵌於皮膚中持續釋放胰島素。由組織切片結果顯示,幾丁聚醣立方體可鑲嵌於豬皮與活體鼠皮之深度約為500~550 μm及 450~500 μm,相當於真皮層中。穿刺後在皮膚產生之微通道能夠在9小時內癒合,避免傷口感染之疑慮。儲存穩定性分析證實,於25 ℃及37 ℃儲存3個月後,依然保有約90 %胰島素的生物活性,推測可能是帶正電幾丁聚醣與胰島素間之靜電作用力,能維持胰島素之結構穩定性。將包覆胰島素(6 IU/kg for 30 days)之微針應用於糖尿病老鼠身上,可在穿刺3小時後測得胰島素濃度約為160 μIU/ml,血糖值降至約初始值之45 %,與皮下注射0.2 IU/kg/day持續注射30天,所造成降至46 %血糖值相近,微針降血糖之效果可維持約30天,推測是幾丁聚醣及胰島素間之分子鏈糾纏,並隨著幾丁聚醣被緩釋降解而逐漸釋放胰島素,最後測得相對皮下注射之生物可利用率及藥理有效性分別為90.5 ± 11.2 % (n = 6)和91.8 ± 9.8 % (n = 6)。以上實驗證實,利用PVA/PVP微針可讓含有胰島素之幾丁聚醣立方體鑲嵌致皮膚真皮層,並於皮膚中持續釋放胰島素,達到長時間穩定血糖功能。
本研究成功開發出二款微針劑型,分別可快速及長效釋放胰島素。第一部份之澱粉/明膠快溶型微針,可在刺入皮膚後,5分鐘內溶解快速釋放胰島素,有機會取代臨床針劑注射,達到相對無痛、快速又有效的胰島素給藥。第二部份以快溶型PVA/PVP微針包覆含有胰島素之幾丁聚醣立方體,做為緩釋胰島素之劑型,能長時間釋放胰島素並穩定血糖數值,將可成為新一代的非注射式緩釋型胰島素給藥技術。
Compared with conventional subcutaneous injection, microneedle patch is potentially a more advantageous transdermal administration approach. The less invasive nature of microneedle patch enables it to achieve a comparable drug delivery effect as subcutaneous injection without the discomfort caused by stimulated nerves. In this study, polymeric microneedles of various drug release modes were developed for the transdermal administration of insulin. The study comprised two stages. In the first stage, rapid-dissolving polymeric microneedles were employed to clinically replace syringes in the delivery of insulin. In the second part, rapid-dissolving microneedle patches were used to administer insulin encapsulated in chitosan microcubes to provide durable blood sugar control through the sustained transdermal delivery of insulin.
The first part presents a dissolving microneedle patch, composed of starch and gelatin, for the rapid and efficient transdermal delivery of insulin. The microneedles completely dissolve after insertion into the skin for 5 min, quickly releasing their encapsulated payload into the skin. A histological examination shows that the microneedles have sufficient mechanical strength to be inserted in vitro into porcine skin to a depth of approximately 200 μm and in vivo into rat skin to 200-250 μm depth. This penetration depth does not induce notable skin irritation or pain sensation. To evaluate the feasibility of using these dissolving microneedles for diabetes treatment insulin-loaded microneedles were administered to diabetic rats using a homemade applicator. Pharmacodynamic and pharmacokinetic results show a similar hypoglycemic effect in rats receiving insulin-loaded microneedles and a subcutaneous injection of insulin. The relative pharmacological availability and relative bioavailability of insulin were both approximately 92 %, demonstrating that insulin retains its pharmacological activity after encapsulation and release from the microneedles. Storage stability analysis confirms that more than 90 % of the insulin remained in the microneedles even after storage at 25 or 37°C for 1 month. These results confirm that the proposed starch/gelatin microneedles enable stable encapsulation of bioactive molecules and have great potential for transdermal delivery of protein drugs in a relatively painless, rapid, and convenient manner.
The second part primarily involved the development of dosage forms for the sustained delivery of insulin, thereby stabilizing the blood sugar level of patients with diabetes for an extended duration of time. This was achieved by encapsulating insulin in chitosan microcubes, which were then loaded into a quick-dissolving microneedle made of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP). The water-soluble PVA/PVP microneedle completely dissolved 3 minutes after penetrating the skin, enabling the chitosan microcubes, which were embedded in the skin as a result, to release insulin in a sustained manner. An examination of histological sections revealed that chitosan microcubes were successfully embedded 500-550 μm and 450-500 μm, respectively, in porcine skin and live rodent skin, equivalent to the depth of the dermis. The micro-passages created by microneedle penetration typically healed within 9 h, precluding the concern for wound infection. A storage stability analysis indicated that the insulin in microneedles retained approximately 90 % biological activity after being stored for 3 months at 25°C and 37°C. This may be attributed to the electrostatic force between positively charged chitosan and insulin, which helped insulin maintain its structural integrity. Microneedles carrying encapsulated insulin (6 IU/kg for 30 days) were applied to diabetic mice. Three hours after application, the mice had an insulin level of approximately 160 μIU/ml, and their blood sugar level lowered to approximately 45 % of the baseline value. These results were comparable to receiving subcutaneous injection of insulin (0.2 IU/kg/day) for 30 consecutive days, which reduced blood sugar level to approximately 46 % of the baseline value. The effect of the microneedles lasted for approximately 30 days, possibly because the entangled molecular chains of chitosan and insulin resulted in the sustained release of insulin as chitosan was gradually degraded. Compared with subcutaneous injection, the application of microneedles achieved 90.5 ± 11.2 % bioavailability (n = 6) and 91.8 ± 9.8 % pharmacological effectiveness (n = 6) in animal models. The results proved that PVA/PVP microneedles enabled insulin-carrying chitosan microcubes to be embedded in the dermis, where the microcubes released insulin in a sustained manner to stabilize blood sugar level for an extended duration of time.
Two dosage forms were successfully developed, one for rapid release and the other for sustained release of insulin. In the first part of this study, rapid-dissolving starch/gelatin microneedles were used. The microneedles dissolved in 5 minutes after penetrating into the skin, making them a clinically viable replacement for syringes to achieve relatively painless, quick, and effective insulin delivery. In the second part, rapid-dissolving PVA/PVP microneedles that contained insulin-carrying chitosan microcubes were used for the sustained release of insulin. With their ability to stabilize blood sugar level for an extended duration of time through sustained insulin release, this type of microneedles can be expected to become the next generation of injection-free sustained insulin delivery method.
[1] A.M. Gharravi, A. Jafar, M. Ebrahimi, A. Mahmodi, E. Pourhashemi, N. Haseli, N. Talaie, P. Hajiasgarli, Current status of stem cell therapy, scaffolds for the treatment of diabetes mellitus, Diabetes & Metabolic Syndrome 12(6) (2018) 1133-1139.
[2] A. Sapra, P. Bhandari, A. Wilhite, Diabetes Mellitus, StatPearls Publishing, (2022) bookshelf ID: NBK568711.
[3] A.K. Rines, K. Sharabi, C.D. J. Tavares, P. Puigserver, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nature Review Drug Discovery 15(11) (2016) 786-804.
[4] R.B. Sharma, L.C. Alonso, Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well, Current Diabetes Reports 17(14) (2014) 492-501.
[5] B.O. Roep, M. Peakman, Antigen targets of type 1 diabetes autoimmunity, Cold Spring Harbor Perspectives in Medicine 2 (2012) 1-14.
[6] L.J. Yang, Big mac attack: does it play a direct role for monocytes/macrophages in type 1 diabetes?, Diabetes 57(11) (2008) 2922-2923.
[7] V.S. Moulle’, K. Vivot, C. Tremblay, B. Zarrouki, J. Ghislain, V. Poitout, Glucose and fatty acids synergistically and reversibly promote beta cell proliferation in rats, Diabetologia 60(5) (2017) 879-888.
[8] S. Cernea, M. Dobreanu, Diabetes and beta cell function: from mechanisms to evaluation and clinical implications, Biochemia Medica 23(3) (2013) 266-280.
[9] H. Zand, N. Morshedzadeh, F. Naghashian, Signaling pathways linking inflammation to insulin resistance, Diabetes & Metabolic Syndrome: Clinical Research & Reviews 11(1) (2017) S307-S309.
[10] Centers for Disease Control and Prevention, National Diabetes Fact Sheet (2007).
[11] K.M. Venkat Narayan, J.P. Boyle, L.S. Geiss, J.B. Saaddine, T.J. Thompson, Impact of recent increase in incidence on future diabetes burden: U.S., 2005-2050, Diabetes Care 29(9) (2006) 2114-2116.
[12] D.M. Nathan, J.B. Buse, M.B. Davidson, E. Ferrannini, R.R. Holman, R. Sherwin, B. Zinman, Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the american diabetes association and the european association for the study of diabetes, Diabetes Care 32(1) (2009) 193-203.
[13] J.A. Cramer, A systematic review of adherence with medications for diabetes. Diabetes Care 27(5) (2004) 1218-1224.
[14] H. Lyer, A. Khedkar, M. Verma, Oral insulin-a review of current status. Diabetes, Obesity and Metabolism 12(3) (2010) 179-185.
[15] Novolog (insulin aspart injection), for subcutaneous or intravenous use Initial U.S. Approval: 2000.
https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020986s082lbl.pdf
[16] Humalog (insulin lispro injection), for subcutaneous or intravenous use Initial U.S. Approval: 1996.
https://www.pdr.net/labels/Communications/1000227/Humalog%20Full%20Prescribing%20Information.pdf
[17] Apidra (insulin glulishine injection), for subcutaneous or intravenous use Initial U.S. Approval: 2004. https://products.sanofi.us/apidra/apidra.html
[18] T. Heise, C. Mathieu, Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes, Diabetes, Obesity & Metabolism 19(1) (2017) 3-12.
[19] Efficacy and safety of FIAsp compared to insulin aspart both in combination with insulin detemir in adults with type 1 diabetes (Onset® 1) https://www.clinicaltrials.gov/ct2/show/NCT01831765
[20] J. Miura, M. Imori, H. Nishiyama, T. Imaoka, Ultra-rapid lispro efficacy and safety compared to Humalog® in Japanese patients with type 1 diabetes: PRONTO-T1D subpopulation analysis, Diabetes Therapy 11(9) (2020) 2089-2104.
[21] Z. Doder, D. Vanechanos, M. Oster, W. Landgraf, S. Lin, Insulin glulisine in pregnancy-experience from clinical trials and post-marketing surveillance, European Journal of Endocrinology 11(1) (2015) 17-20.
[22] J. Miura, H. Nishiyama, M. Imori, Long-term efficacy and safety of ultra rapid lispro in Japanese patients with Type 1 diabetes: subpopulation analysis of the 52-week Pronto-T1D study, Diabetes Therapy 12(9) (2021) 2471-2484.
[23] IrI B. Hirsch, Rattan Juneja, John M. Beals, Caryl J. Antalis, The evolution of insulin and how it informs therapy and treatment choices, Endocrine Reviews 41(5) (2020) 733-755.
[24] Lantus®, (insulin glargine injection) for subcutaneous use Initial U.S. Approval: 2000. https://www.lantus.com/
[25] Levemir®, (insulin detemir) injection, for subcutaneous use Initial U.S. Approval: 2005. https://www.novonordisk-us.com/products/diabetes.html
[26] Tresiba® (insulin degludec) injection, for subcutaneous use Initial U.S. Approval: 2015. https://www.novonordisk-us.com/products/diabetes.html
[27] A.N. Zaykov, J.P. Mayer, R.D. DiMarchi, Pursuit of a perfect insulin, Nature Reviews Drug Discovery 15(6) (2016) 425-439.
[28] J. Pick up, H. Keen, Continuous subcutaneous insulin at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes, Diabetes Care 25(3) (2002) 593-598.
[29] N.A. Bakh, A.B. Cortinas, M.A. Weiss, R.S. Langer, D.G. Anderson, Z. Gu, S. Dutta, M.S. Strano, Glucose-responsive insulin by molecular and physical design, Nature Chemistry 22(10) (2017) 937-943.
[30] S. Darvishha, S. Amiri, (Trans) dermal insulin delivery based on polymeric systems, International Journal of Polymeric Materials and Polymeric Biomaterials 68(18) (2019) 1-15.
[31] J.S. Patton, Unlocking the opportunity of tight glycaemic control, Diabetes Obesity and Metabolism 7(1) (2005) 5-8.
[32] A. Bahmanpour, M. Ghaffari, P.B. Milan, F. Moztarzadeh, Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin, Biotechnology and Applied Biochemistry 68(2) (2021) 247-256.
[33] M.H. Ling, M.C. Chen, Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats, Acta Biomaterialia 9(11) (2013) 8952-8961.
[34] S.I. Hadebe, P.S. Ngubane, R. Serumula, C.T. Musabayane, Transdermal delivery of insulin by amidated pectin hydrogel matrix patch in streptozotocin-induced diabetic rats: effects on some selected metabolic parameters, Public Library of Science, 9(7) (2014) 1-10.
[35] D.Kh. Zubaerova, N.I. Larionova, Noninvasive insulin delivery systems, Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2(4) (2008) 346-355.
[36] A. Nanda, S. Nanda, N.M.K. Ghilzai, Current developments using emerging transdermal technologies in physical enhancement methods, Current Drug Delivery 3(3) (2006) 233-242.
[37] Y. Zhang, J. Yu, A.R. Kahkoska, J. Wang, J.B. Buse, Z. Gu, Advances in transdermal insulin delivery, Advanced Drug Delivery Reviews 139(15) (2019) 51-70.
[38] A.C. Sintov, U. Wormser, Topical iodine facilitates transdermal delivery of insulin, Journal of Controlled Release 118(2) (2007) 185-188.
[39] R. Rastogi, S. Anand, V. Koul, Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin, Drug Development and Industrial Pharmacy 36(11) (2010) 1303-1311.
[40] T.W. Wong, T.Y. Chen, C.C. Huang, J.C. Tsai, S.W. Hui, Painless skin electroporation as a novel way for insulin delivery, Diabetes Technology & Therapeutics 13(9) (2011) 929-935.
[41] M.J. Pikal, The role of electroosmotic flow in transdermal iontophoresis, Advanced Drug Delivery Reviews 46(1) (2001) 281-305.
[42] A. Sieg, F. Jeanneret, M. Fathi, D. Hochstrasser, S. Rudaz, J.L. Veuthey, R.H. Guy, M.B. Delgado-Charro, Extraction of amino acids by reverse iontophoresis in vivo, European Journal of Pharmaceutics and Biopharmaceutics 72(1) (2009) 226-231.
[43] O. Siddiqui, Y. Sun, J.C. Liu, Y.W. Chien, Facilitated transdermal transport of insulin, Journal of Pharmaceutical Science 76(4) (1987) 341-345.
[44] S. Kagatani, T. Shinoda, Y. Konno, M. Fukui, T. Ohmura, Y. Osada, Electroresponsive pulsatile depot delivery of insulin from poly(dimethylaminopropylacrylamide) gel in rats, Journal of Pharmaceutical Science 86(11) (1997) 1273-1277.
[45] P.N.T. Wells, H.D. Liang, Medical ultrasound: imaging of soft tissue strain and elasticity, Journal of the Royal Society Interface 8(64) (2011) 1521-1549.
[46] S. Mitragotri, D. Blankschtein, R. Langer, Transdermal drug delivery using low-frequency sonophoresis, Pharmaceutical Research 13(3) (1996) 411-420.
[47] J. Baxter, S. Mitragotri, Needle-free liquid jet injections: mechanisms and applications, Expert Review of Medical Devices 3(5) (2006) 565-574.
[48] S. Mitragotri, Immunization without needles, Nature Reviews Immunology 5 (2005) 905-916.
[49] D.L. Bremseth, F. Pass, Delivery of insulin by jet injection: recent observations, Diabetes Technology & Therapeutics 3(2) (2001) 225-232.
[50] S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated microneedles: a novel approach to transdermal drug delivery, Journal of Pharmaceutical Sciences 87(8) (1998) 922-925.
[51] M.R. Prausnitz, Engineering microneedle patches for vaccination and drug delivery to skin, Annual Review of Chemical and Biomolecular Engineering 8(9) (2017) 177-200.
[52] H.L. Quinn, E. Larraneta, R.F. Donnelly, Dissolving microneedles: safety considerations and future perspectives, Therapeutic Delivery 7(5) (2016) 283-285.
[53] S. Liu, M.N. Jin, Y.S. Quan, F. Kamiyama, H. Katsumi, T. Sakane, A. Yamamoto, The development, and characteristics of novel microeedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin, Journal of Control Release 161(3) (2012) 933-941.
[54] X. Hong, L. Wei, F. Wu, Z. Wu, L. Chen, Z. Liu, W. Yuan, Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Design, Development and Therapy 7 (2013) 945-952.
[55] B.Z. Chen, M. Ashfaq, D.D. Zhu, X.P. Zhang, X.D. Guo, Controlled delivery of insulin using rapidly separating microneedles fabricated from genipin-crosslinked gelatin, Macromolecular Rapid Communications 39(20) (2018) 1-6.
[56] J. Di, S. Yao, Y. Ye, Z. Cui, J. Yu, T.K. Ghosh, Y. Zhu, Z. Gu, Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots, American Chemical Society Nano 9(9) (2015) 9407-9415.
[57] Y. Ye, J. Yu, C. Wang, N.Y. Nguyen, G.M. Walker, J.B. Buse, Z. Gu, Microneedle integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery, Advanced Materials 28(16) (2016) 3115-3121.
[58] J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun, D. Ranson, F.S. Ligler, J.B. Buse, Z. Gu, Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery, Proceedings of the National Academy of Sciences 112(27) (2015) 8260-8265.
[59] J. Szymonska, M.T. Korecka, F. Krok, Characterization of starch nanoparticles, Journal of Physics: Conference Series 146 (2009) 1-6.
[60] D.D. Lopez, J.C.G. Quesada, I.M. Gullon, M.G. Montalban, Influence of starch composition and molecular weight on physicochemical properties of biodegradable films, Polymers 11(7) (2019) 1084-1101.
[61] M. Abhilash, D. Thomas, 15-Biopolymers for biocomposites and chemical sensor applications, Biopolymer Composites in Electronics (2017) 405-435.
[62] K. Shevkani, N. Singh, R. Bajaj, A. Kaur, Wheat starch production, structure, functionality and applications-a review, International Journal of Food Science and Technology 52(1) (2017) 38-58.
[63] E. Schwach, L. Averous, Starch-based biodegradable blends: morphology and interface properties, Polymer International 53(12) (2004) 2115-2124.
[64] A. Martins, S. Chung, A.J. Pedro, R.A. Sousa, A.P. Marques, R.L. Reis, N.M. Neves, Hierarchical starch-based fibrous scaffold for bone tissue engineering applications, Journal Tissue Engineering and Regenerative Medicine 3 (2009) 37-42.
[65] F. Parvin, Md.A. Rahman, J.M.M. Islam, M.A. Khan, A.H.M. Saadat, Preparation and characterization of Starch/PVA blend for biodegradable packaging material, Advanced Materials Research 123 (2010) 351-354.
[66] C.R. Smith, Osmosis and swelling of gelatin, Journal of the American Chemical Society 43(6) (1921) 1350-1366.
[67] C.A. Farrugia, M.J. Groves, Gelatin behaviour in dilute aqueous solution: designing a nanoparticulate formulation, Journal of Pharmacy and Pharmacology 51(6) (1999) 643-649.
[68] K. Su, C. Wang, Recent advances in the use of gelatin in biomedical research, Biotechnology Letters 37(10) (2015) 2139-2145.
[69] A.O. Elzoghby, Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research, Journal of Controlled Release 172(3) (2013) 1075-1091.
[70] Z.A.N. Hanani, Y.H. Roos, J.P. Kerry, Use and Application of gelatin as potential biodegradable packaging materials for food products, International Journal of Biological Macromolecules 71 (2014) 94-102.
[71] S.B. Sulaiman, R.B.H. Idrus, N.M. Hwei, Gelain microsphere for cartilage tissue engineering: Current and future strategies, Polymer 12(10) (2020) 1-16.
[72] M. Nagarajan, S. Benjakul, T. Prodpran, P. Songtipya, P. Nuthong, Film forming ability of gelatins from splendid squid (Loligo formosana) skin bleached with hydrogen peroxide, Food Chemistry 138(2-3) (2013) 1101-1108.
[73] M.C.G. Guillen, B. Gimenez, M.E.L. Caballero, M.P. Montero, Functional and bioactive properties of collagen and gelatin from alternative sources: a review, Food Hydrocolloids 25(8) (2011) 1813-1827.
[74] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27(18) (2006) 3413-3431.
[75] T. Ozaki, N. Nishimura, T. Muto, K. Sugata, S. Kawabe, K. Goto, K. Koyama, H. Fujita, Y. Takahashi, M. Akiyama, Safety and immunogenicity of gelatin-free varicella vaccine in epidemiological and serological studies in Japan, Vaccine 23(10) (2005) 1205-1208.
[76] E. Mohammadian, M.A. Sani, S.M. Jafari, Smart monitoring of gas/temperature changes within food packaging based on natural colorants, Comprehensive Reviews in Food Science and Food Safety 19(6) (2020) 2885-2931.
[77] Y.C. Kim, J.H. Park, M.R. Prausnitz, Microneedle for drug and vaccine delivery, Advanced Drug Delivery Review 64(14) (2012) 1547-1568.
[78] M.C. Chen, S.F. Huang, K.Y. Lai, M.H. Ling, Fully embeddable chitosan microneedles as sustained release depot for intradermal vaccination, Biomaterials 34(12) (2013) 3077-3086.
[79] S. Indermu, R. Luttge, Y.E. Choonara, P. Kumar, L.C. du Toit, G. Modi, V. Pillay, Current advances in the fabrication of microneedles for transdermal delivery, Journal Control Release 185(10) (2014) 130-138.
[80] T.W. Wong, Chitosan and its use in design of insulin delivery system, Recent Patents on Drug Delivery & Formulation 3(18) (2009) 8-25.
[81] N. Dabholkar, S. Gorantla, T. Waghule, V.K. Rapalli, A. Kothuru, S.Goel, G. Sighvi, Biodegradable microneedles fabricated with carbohydrates and proteins: revolutionary approach for transdermal drug delivery, International Journal of Biological Macromolecules 170(15) (2021) 602-621.
[82] M. Geroge, T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drug: Alginate and chitosan- a review, Journal of Controlled Release 114(1) (2006) 1-14.
[83] M.N.V.R. Kumar, A review of chitin and chitosan applications, React Function Polymer 46(1) (2000) 1-27.
[84] M. Rinaudo, Chitin and chitosan: properties and applications, Progress in Polymer Science 31(7) (2006) 603-632.
[85] M.M. Issa, M. Koping-Hoggard, P. Artursson, Chitosan and the mucosal delivery of biotechnology drugs, Drug Discovery Today: Technologies 2(1) (2005) 1-6.
[86] Z. Lu, W. Chen, J.H. Hamman, J. Ni, X. Zhai, Chitosan-polycarbophil interpolyelectrolyte complex as an excipient for bioadhesive matrix systems to control macromolecular drug delivery, Pharmaceutical Development and Technology 13(1) (2008) 37-47.
[87] B.A. Teply, R. Tong, S.Y. Jeong, G. Luther, I. Sherific. C.H. Yim, A. Khademhosseini, O.C. Farokhzad, R.S. Langer, J. Cheng, The use of charged-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules, Biomaterial 29(9) (2008) 1216-1223.
[88] P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers, Journal of Applied Polymer Science 63(1) (1997) 125-132.
[89] A. Vila, A. Sanchez, K. Janes, I. Behrens, T. Kissel, J.L.V. Jato, M.J. Alonso, Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice, European Journal of Pharmaceutics and Biopharmaceutics 57(1) (2004) 123-131.
[90] T.S. Anirudhan, S.S Nair, A.S. Nair, Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine, Carbohydrate Polymers 5(152) (2016) 687-698.
[91] M. Kurakula, K. Rao, Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications, European Polymer Journal 136(5) (2020) 109919.
[92] M. Negahdary, G. Mazaheri. S. Rad, M. Hadi, R. Malekzadeh, M.M. Saadatmand, S.R. Zarchi, F. Pishbin, M.K. Hemami, Direct electron transfer of hemoglobin on manganese III Oxide-Ag nanofibers modified glassy carbon electrode, International Journal of Analytical Chemistry 2 (2012) Article ID: 375831.
[93] A.S. El-Houssiny, A.A.M. Ward, S.H. Mansour, S.L. Abd-El-Messieh, Biodegradable blends based on polyvinyl pyrrolidone for insulation purposes, Journal of Applied Polymer Science 124(5) (2012) 3879-3891.
[94] I. Bartolozzi, R. Solaro, E. Schacht, E. Chiellini, Hydroxylend-capped macromers of N-vinyl-2-pyrrolidnone as precursors of amphiphilic block copolymers, European Polymer Journal 43(11) (2007) 4628-4638.
[95] G.P. Kumar, A.R. Phani, R.G.S.V. Prasad, J.S. Sanganal, N. Manali, R. Gupta, N. Rashmi, G.S. Prabhakara, C.P. Salins, K. Sandeep,D.B. Raju, Polyvinylpyrrolidone oral films of enrofloxacin: Film characterization and drug release, International Journal of Pharmaceutics 471(1-2) (2014) 146-152.
[96] E.V. Vassillieva, H. Kalluri, D. McAllister, M.T. Taherbhai, E.S. Esser, W.P. Pewin, J.A.P. Penaloza, M.R. Prausnitz, R.W. Compans, I. Skountzou, Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature, Drug Delivery and Translational Research 5(4) (2015) 360-371.
[97] M. Julinova, L. Vanharouva, M. Jurca, Water-soluble polymeric xenobiotics-Polyvinyl alcohol and polyvinylpyrrolidone-and potential solutions to environmental issues: A brief review, Journal of Environmental Management 228(15) (2018) 213-222.
[98] J. Eisele, G. Haynes, T. Rosamillia, Characterization and toxicological behaviour of Basic Methacrylate Copolymer for GRAS evaluation, Regulatory Toxicology and Pharmacology 61(1) (2011) 32-43.
[99] M. Amann, O. Minge, Biodegradability of Poly(vinyl acetate) and Related Polymers, Advances in Polymer Science 245 (2012) 137-172.
[100] M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, Journal of Biomedical Materials Research Part B Applied Biomaterials 100B(5) (2012) 1451-1457.
[101] M.H. Alves, B.E.B. Jensen, A.A.A. Smith, A.N. Zelikin, Poly(vinyl alcohol) physical hydrogels: New vista on a long serving biomaterials, Macromolecular Bioscience 11(10) (2011) 1293-1313.
[102] H.X. Nguyen, B.D. Bozorg, Y. Kim, A. Wieber, G. Birk, D. Lubda, A.K. Banga, Poly(vinyl alcohol) microneedles: fabrication, characterization, application for transdermal drug delivery of doxorubicin, European Journal of Pharmaceutics and Biopharmaceutics 129 (2018) 88-103.
[103] I. Menon, P. Bagwe, K.B. Gomes, L. Bajaj, R. Gala, M.N. Uddin, M.J.D. Souza, S.M. Zughaier, Microneedles: a new generation vaccine delivery system, Micromachines 12(4) (2021) 435.
[104] F. Kivlehan, Y. Lanyon, D. Arrigan, Electrochemical study of insulin at the polarized liquid-liquid interface, Langmuir 24(17) (2008) 9876-9882.
[105] J.P. Mayer, F. Zhang, R.D. DiMarchi, Insulin structure and function, Peptide Science 88(5) (2007) 687-713.
[106] I.B. Hirsch, R. Juneja, J.M. Beals, C.J. Antalis, E.E. Wright, The evolution of insulin and how it informs therapy and treatment choices, Endocrine Reviews 41(5) (2020) 733-755.
[107] O. Wintersteiner, H.A. Abramson, The isoelectric point of insulin: electrical properties of adsorbed and crystalline insulin, Journal of Biological Chemistry 99(3) (1933) 741-753.
[108] P. Khanna, J.A. Strom, J.I. Malone, S. Bhansali, Microneedle-based automated therapy for diabetes mellitus, Journal of Diabetes Science and Technology 2(6) (2008) 1122-1129.
[109] E. Gok, S. Olgaz, Binding of fluorescein isothiocyanate to insulin: a fluorimetric labeling study, Journal of Fluorescence 14(2) (2004) 203-206.
[110] S. Sajeesh, C.P. Sharma, Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanopartilces for oral insulin delivery, International Journal of Pharmaceutics 325(1-2) (2006) 147-154.
[111] A. Makhlof, Y. Tozuka, H. Takeuchi, Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery, European Journal of Pharmaceutical Sciences 42(5) (2011) 445-451.
[112] K. Lee, J.D. Kim, C.Y. Lee, S. Her, H. Jung, A high-capacity, hybrid electromicroneedle for in-situ cutaneous gene transfer, Biomaterials 32(30) (2011) 7705-7710.
[113] F. Ravenelle, M. Rahmouni, Contramid®: high-amylose starch for controlled drug delivery, American Chemical Society Symposium Series 934 (2006) 79-104.
[114] A. Baumann, Early Development of Therapeutic Biologics – Pharmacokinetcs, Current Drug Metabolism 7(1) (2006) 15-21.
[115] T.A. Sonia, M.R. Rekha, C.P. Sharma, Bioadhesive hydrophobic chitosan microparticles for oral delivery of insulin: in vitro characterization and in vivo uptake studies, Journal of Applied Polymer Science 119(5) (2011) 2902-2910.
[116] M.M. Grajower, C.G. Fraser, J.H. Holcombe, M.L. Daugherty, W.C. Harris, M.R.D. Felippis, O. M. Santiago, N.G. Clark, How long should insulin be used once a vial is started, Diabetes Care 26(9) (2003) 2665-2669.
[117] A. K. J. Gradel, T. Porsgaard, J. Lykkesfeldt, T. Seested, S. G. Nielsen, N. R. Kristensen, H. H. F. Refsgaard, Factors affecting the absorption of subcutaneously administered insulin: effect on variability, Journal of Diabetes Research 2018 (2018) Article ID 1205121.
[118] A. Pintatum, W. Maneerrat, E. Logie, E. Tuenter, M.E. Sakavitsi, L. Pieters, W.V. Berghe, T. Sripisut, S. Deachathai, S. Laphookhieo, In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four curcuma species and the isolation of compounds from curcuma aromatica rhizome, Biomolecules 10(5) (2020) 1-20.
[119] K. Migalska, D. Morrow, M.J. Garland, R.S. Thakur, D. Woolfson, R. Donnelly, Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery, Pharmaceutical Research 28(8) (2011) 1919-1930.
[120] D. Shah, Y. Guo, J. Ocando, J. Shao, FITC labeling of human insulin and transport of FITC-insulin conjugates through MDCK cell monolayer, Journal of Pharmaceutical Analysis 9(6) (2019) 400-405.
[121] Y.Z. Zhao, X. Li, C.T. Lu, Y.Y. Xu, H.F. Lv, D.D. Dai, L. Zhang, C.Z. Sun, W. Yang, X.K. Li, Y.P. Zhao, H.X. Fu, L. Cai, M. Lin, L.J. Chen, M. Zhang, Experiment on the feasibility of using modified gelatin nanoparticles as insulin pulmonary administration system for diabetes therapy, Acta Diabetologica 49(4) (2012) 315-325.
[122] M.A.L. Teo, C. Shearwood, K.C. Ng, J. Lu, S. Moochhala, In vitro and in vivo characterization of MEMS microneedles, Biomedical Microdevices 7(1) (2005) 47-52.
[123] Y. Li, J. Yang, Y. Zheng, R. Ye, B. Liu, Y. Hunag, W. Zhou, L. Jiang, Iontophoresis- driven porous microneedle array patch for active transdermal drug delivery, Acta Biomaterialia 121(2) (2021) 349-358.
[124] D.V. McAllister, P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies, Proceedings of the National Academy of Sciences 100(24) (2003) 13755-13760.
[125] Y. Ito, T. Nakahigashi, N. Yoshimoto, Y. Ueda, N. Hamasaki, K. Takada, Transdermal insulin application system with dissolving microneedles, Diabetes Technology & Therapeutics 14(10) (2012) 891-899.
[126] I.C. Lee, W.M. Lin, J.C. Shu, S.W. Tsai, C.H. Chen, M.T. Tsai, Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice, Journal of Biomedical Materials Research: Part A 105(1) (2017) 84-93.
[127] L.C. Ng, M. Gupta, Transdermal drug delivery systems in diabetes management: A review, Asian Journal of Pharmaceutical Sciences 15(1) (2020) 13-25.
[128] R. Jamaledin, P. Makvandi, C.K.Y. Yiu, T. Agarwal, R. Vecchione, W. Sun, T.K. Maiti, F.R. Tay, P.A. Netti, Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning, Advanced Therapeutics 3(12) (2020) 1-27.
[129] S. Mao, O. Germershaus. D. Fischer, T. Linn, R. Schnepf, T. Kissel, Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells, Pharmaceutical Research 22(12) (2005) 2058-2068.
[130] F.L. Mi, Y.Y. Wu, Y.L. Chiu, M.C. Chen, H.W. Sung, S.H. Yu, S.S. Shyu, M.F. Huang, Synthesis of a novel glycoconjugated chitosan and preparation of its derived nanoparticles for targeting HepG2 cells, Biomacromolecules 8(3) (2007) 892-898.
[131] D. Sharma, J. Singh, Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan-zinc-insulin complexes incorporated in thermosensitive copolymer, Journal of Controlled Release 323(10) (2020) 161-178.
[132] M. Oak, J. Singh, Controlled delivery of vasal level of insulin from chitosan-zinc-insulin-complex-loaded thermosensitive copolymer, Journal of Pharmaceutical Sciences 101(3) (2012) 1079-1096.
[133] P. Mukhopadhyay, R. Mishra, D. Rana, P. Kundu, Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review, Progress in Polymer Science 37(11) (2012) 1457-1475.
[134] I.B. Hirsch, R. Juneja, J.M. Beals, C.J. Antalis, E.E. Wright, The evolution of insulin and how it informs therapy and treatment choices, Endocrine Reviews 41(5) (2020) 733-755.
[135] C.P. Silva, J.H. Martinez, K.D. Martinez, M.E. Farias, F.C. Leskow, O.E. Perez, Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells, Colloids and Surfaces A: Physicochemical and Engineering Aspects 537(20) (2018) 425-434.
[136] A. Jankovic, L. Saso, A. Korac, B. Korac, Relation of redox and structural alterations of rat skin in the function of chronological aging, Oxidative Medicine and Cellular Longevity Article ID: 2471312.
[137] A.E. Caprifico, E. Polycarpou, P.J.S. Foot, G. Calabrese, Biomedical and pharmacological uses of fluorescein isothiocyanate chitosan-based nanocarriers, Macromolecular Bioscience 21(1) (2021) 2000312.
[138] A. Chandra, S. Prasad, H. Iuele, F. Colella, R. Rizzo, E. D’Amone, G. Glgli, L.L.D. Mercato, Highly sensitive fluorescent pH microsensors based on the ratiometric dye pyranine immobilized on silica microparticles, Chemistry A European Journal 27(53) (2021) 13318-13324.
[139] B.S. Kim, J.M. Oh, H. Hyun, K.S. Kim, S.H. Lee, Y.H. Kim, K. Park, H.B. Lee, M.S. Kim, Insulin-loaded microcapsules for in vivo delivery, Molecular Pharmaceutics 6(2) (2009) 353-365.
[140] Y. Wang, M. Fu, Z. Wang, X.X. Zhu, Y. Guan, Y. Zhang, A sustained zero-order release carrier for long-acting, peakless basal insulin therapy, Journal of Materials Chemistry B 8(9) (2020) 1952-1959.
[141] S. Gorantla, N. Dabholkar, S. Sharma, V.K. Rapalli, A. Alexander, G. Singhvi, Chitosan-based microneedles as a potential platform for drug delivery through the skin: trends and regulatory aspects, International Journal of Biological Macromolecules 184(1) (2021) 438-453.
[142] F. Kivlehan, Y.H. Lanyon, D.W.M. Arrigan, Electrochemical study of insulin at the polarized liquid-liquid interface, Langmuir 24(17) (2008) 9876-9882.
[143] A. Vila, A. Sanchez, K. Janes, I. Behrens, T. Kissel, J.L. Vila Jato, M.J. Alonso, Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice, European Journal of Pharmaceutics and Biopharmaceutics 57(1) (2004) 123-131.
[144] Y. Zhang, X. Dou, L. Zhang, H. Wang, T. Zhang, R. Bai, Q. Sun, X. Wang, T. Yu, D. Wu, B. Han, X. Deng, Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration, Bioactive Materials 11 (2022) 130-139.
[145] G. Millotti, F. Laffleur, G. Perera, C. Vigl, K. Pickl, F. Sinner, A.B. Schnurch, In vivo evaluation of thiolated chitosan tablets for oral insulin delivery, Journal of Pharmaceutical Sciences 103(10) (2014) 3165-3170.
[146] P. Rathore, A. Mahor, S. Jain, A. Haque, P. Kesharwani, Formulation development, in vitro and in vivo evaluation of chitosan engineered nanoparticles for ocular delivery of insulin, RSC Advances 10(71) (2020) 43629-43639.
[147] T. Wong, Chitosan and its use in design of insulin delivery system, Recent Patents on Drug Delivery & Formulation 3(18) (2009) 8-25.
[148] R. Yin, K. Wang, S. Du, L. Chen, J. Nie, W. Zhang, Design of genipiin-crosslinked microgels from concanavalin a and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery, Carbohydrate Polymers 103(15) (2014) 369-376.
[149] J. Mudassir, Y. Darwis, S. Muhamad, A.A. Khan, Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation, International Journal of Nanomedicine 14(5) (2019) 4895-4909.
[150] D.H. Kim, W. Jang, K. Choi, J.S. Choi, J. Pyun, J. Lim, K. Char, S.G. Im, One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers, Science Advances 6(28) (2020) 1-11.
[151] M. Oak, J. Singh, Chitosan-zinc-insulin complex incorporated thermosensitive polymer for controlled delivery of basal insulin in vivo, Journal of Controlled Release 163(2) (2012) 145-153.