| 研究生: |
蔡易霖 Tsai, Yi-Lin |
|---|---|
| 論文名稱: |
使用數值方法解析外同軸氣流對預膜式噴嘴特性影響之研究 A numerical study of pre-film type nozzle with coaxial flow |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 液膜破裂 、渦漩數 、兩項流 、計算流體力學 |
| 外文關鍵詞: | liquid film, Swirl number, two phase flow, CFD |
| 相關次數: | 點閱:113 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類追逐科技的極限時,又需兼顧環境的保護。液態燃料在工業或運輸中有巨大的優勢,但燃燒後之排放受到目前世界各國立定環保法規之限制,過去為追求快速之發展一味追求最大輸出,現今的社會有更多的考量。噴霧之行為關係到液態燃料燃燒之排放,故本研究使用Star ccm+中的VOF 法,針對渦輪發動機常用之預膜式噴最進行,主要破裂[1]之研究,其內容分為可視化與流場之數據分析。由可視化之直接觀察流場中Kelvin-Helmholtz 之現象,使得液膜震盪,並且破裂,此外隨渦漩對液膜撕裂之影響液也可以由可視化看出切線速度對於液膜之撕裂,藉由加入渦漩空氣能加速液膜之破裂,並且軸線方向之空氣由液膜運動方向撕裂液膜,切線方向之空氣由液膜切線方向撕裂液膜。
並分析渦漩數與動量通量比對於液膜破裂的影響,其中分為生長率、液膜張腳與破裂長度。在不同軸向空氣流速觀點下,渦漩氣流在提升液膜張角的同時減短了液膜軸線方向之破裂長度,但又因液膜張角獲得了增加,故隨液膜運動之方向量測的破裂長度因此並為隨渦漩數增加而減少,若換為空氣液體動量通量比,則可發現若渦漩數增加則須更大之動量通量比才能達到相同之破裂長度。
關鍵字:液膜破裂、渦漩數、兩項流、計算流體力學
A pre-film injector with a coaxial swirl air flow is investigated by using CFD method with commercial code named starccm+. The breakup process of liquid film has preformed step by step with an implicit unsteady time model. For this simulation, several gists have to deal by numerical model. VOF model is used as multiphase model, interface tracking is preform as isovalue of volume of fraction of water. Decomposed swirl air into the coaxial one and the tangential one. Both air flow accelerate the breakup process, and the increasement of each one increase momentum ratio. The coaxial air flow induce the oscillation of liquid film, this phenomenon can be quantify by the growth rate. The tangential air flow can be descript by swirl number which is the ratio of tangential momentum flux and axial momentum flux. The effect of coaxial velocity, momentum ratio, swirl number have been analysis in this study by both visualization and data formation.
參考文獻
[1] C. X. Shao, K. Luo, M. Chai, and J. R. Fan, "Sheet, ligament and droplet formation in swirling primary atomization," Aip Advances, vol. 8, no. 4, Apr 2018, Art no. 045211, doi: 10.1063/1.5017162.
[2] A. H. Lefebvre and V. G. McDonell, Atomization and sprays. CRC press, 2017.
[3] S. Rezaei, F. Vashahi, G. Ryu, and J. Lee, "On the correlation of the primary breakup length with fuel temperature in pressure swirl nozzle," (in English), Fuel, Article vol. 258, p. 10, Dec 2019, Art no. 116094, doi: 10.1016/j.fuel.2019.116094.
[4] N. Dombrowski and W. R. Johns, "THE AERODYNAMIC INSTABILITY AND DISINTEGRATION OF VISCOUS LIQUID SHEETS," (in English), Chem. Eng. Sci., Article vol. 18, no. 3, pp. 203-&, 1963, doi: 10.1016/0009-2509(63)85005-8.
[5] D. I. Meiron, G. R. Baker, and S. A. Orszag, "ANALYTIC STRUCTURE OF VORTEX SHEET DYNAMICS .1. KELVIN-HELMHOLTZ INSTABILITY," (in English), J. Fluid Mech., Article vol. 114, no. JAN, pp. 283-298, 1982, doi: 10.1017/s0022112082000159.
[6] J. M. C. N. A. Beer, Combustion aerodynamics. London: Applied Science Publishers (in English), 1972.
[7] L. H. Liu, Q. F. Fu, and L. J. Yang, "Theoretical Atomization Model of Liquid Sheet Generated by Coaxial Swirl Injectors," (in English), Int. J. Multiph. Flow, Article vol. 142, p. 10, Sep 2021, Art no. 103725, doi: 10.1016/j.ijmultiphaseflow.2021.103725.
[8] K. Rajamanickam and S. Basu, "On the dynamics of vortex-droplet interactions, dispersion and breakup in a coaxial swirling flow," (in English), J. Fluid Mech., Article vol. 827, pp. 572-613, Sep 2017, doi: 10.1017/jfm.2017.495.
[9] H. B. Squire, "INVESTIGATION OF THE INSTABILITY OF A MOVING LIQUID FILM," (in English), British Journal of Applied Physics, Article vol. 4, no. JUN, pp. 167-169, 1953, doi: 10.1088/0508-3443/4/6/302.
[10] N. Dombrowski and P. C. Hooper, "THE EFFECT OF AMBIENT DENSITY ON DROP FORMATION IN SPRAYS," (in English), Chem. Eng. Sci., Article vol. 17, no. 4, pp. 291-&, 1962, doi: 10.1016/0009-2509(62)85008-8.
[11] Q. F. Fu, F. Ge, W. D. Wang, and L. J. Yang, "Spray characteristics of gel propellants in an open-end swirl injector," (in English), Fuel, Article vol. 254, p. 10, Oct 2019, Art no. 115555, doi: 10.1016/j.fuel.2019.05.138.
[12] C. Chen and Z. G. Tang, "Investigation of the spray formation and breakup process in an open-end swirl injector," (in English), Sci. Prog., Article vol. 103, no. 3, p. 19, Jul 2020, Art no. 0036850420946168, doi: 10.1177/0036850420946168.
[13] N. K. Rizk and A. H. Lefebvre, "INTERNAL FLOW CHARACTERISTICS OF SIMPLEX SWIRL ATOMIZERS," (in English), J. Propul. Power, Article vol. 1, no. 3, pp. 193-199, 1985, doi: 10.2514/3.22780.
[14] J. Jedelsky, M. Maly, N. P. del Corral, G. Wigley, L. Janackova, and M. Jicha, "Air-liquid interactions in a pressure-swirl spray," (in English), Int. J. Heat Mass Transf., Article vol. 121, pp. 788-804, Jun 2018, doi: 10.1016/j.ijheatmasstransfer.2018.01.003.
[15] S. Jeong and Y. Yoon, "Sheet-breakup characteristics of a closed-type swirl injector considering internal flow instability," (in English), Acta Astronaut., Article vol. 186, pp. 363-371, Sep 2021, doi: 10.1016/j.actaastro.2021.05.049.
[16] I. Oshima and A. Sou, "Longitudinal oscillation of a liquid sheet by parallel air flows," (in English), Int. J. Multiph. Flow, Article vol. 110, pp. 179-188, Jan 2019, doi: 10.1016/j.ijmultiphaseflow.2018.09.010.
[17] X. Y. Li and M. C. Soteriou, "High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers," Physics of Fluids, vol. 28, no. 8, Aug 2016, Art no. 082101, doi: 10.1063/1.4959290.
[18] S. R. Prakash, S. S. Jain, J. A. Lovett, B. N. Raghunandan, R. V. Ravikrishna, and G. Tomar, "DETAILED NUMERICAL SIMULATIONS OF ATOMIZATION OF A LIQUID JET IN A SWIRLING GAS CROSSFLOW," (in English), Atom. Sprays, Article vol. 29, no. 7, pp. 577-603, 2019, doi: 10.1615/AtomizSpr.2019031322.
[19] J. Jeon, M. Hong, Y. M. Han, and S. Y. Lee, "Experimental Study on Spray Characteristics of Gas-Centered Swirl Coaxial Injectors," (in English), J. Fluids Eng.-Trans. ASME, Article vol. 133, no. 12, p. 7, Dec 2011, Art no. 121303, doi: 10.1115/1.4005344.
[20] W. Chu, X. Q. Li, Y. H. Tong, and Y. J. Ren, "Numerical investigation of the effects of gas-liquid ratio on the spray characteristics of liquid-centered swirl coaxial injectors," (in English), Acta Astronaut., Article vol. 175, pp. 204-215, Oct 2020, doi: 10.1016/j.actaastro.2020.05.050.
[21] P. E. O. Buelow, C. P. Mao, S. Smith, and D. Bretz, "Two-phase computational fluid dynamics analysis applied to prefilming pure-airblast atomizer," (in English), J. Propul. Power, Article; Proceedings Paper vol. 19, no. 2, pp. 235-241, Mar-Apr 2003, doi: 10.2514/2.6104.
[22] S. X. Yuan, R. Dabirian, O. Shoham, and R. S. Mohan, "Numerical Simulation of Liquid Droplet Coalescence and Breakup," (in English), J. Energy Resour. Technol.-Trans. ASME, Article vol. 142, no. 10, p. 11, Oct 2020, Art no. 102101, doi: 10.1115/1.4046603.
[23] H. C. Cong, L. J. Qian, Y. T. Wang, and J. Z. Lin, "Numerical simulation of the collision behaviors of binary unequal-sized droplets at high Weber number," (in English), Physics of Fluids, Article vol. 32, no. 10, p. 13, Oct 2020, Art no. 103307, doi: 10.1063/5.0020709.
[24] W. Chu, Y. J. Ren, Y. H. Tong, X. Q. Li, C. A. J. Jiang, and W. Lin, "Numerical Study of Effects of Backpressure on Self-Pulsation of a Liquid-Centred Swirl Coaxial Injector," (in English), Int. J. Multiph. Flow, Article vol. 139, p. 14, Jun 2021, Art no. 103626, doi: 10.1016/j.ijmultiphaseflow.2021.103626.
[25] J. Ishimoto, F. Sato, and G. Sato, "Computational Prediction of the Effect of Microcavitation on an Atomization Mechanism in a Gasoline Injector Nozzle," (in English), J. Eng. Gas. Turbines Power-Trans. ASME, Article vol. 132, no. 8, p. 15, Aug 2010, Art no. 082801, doi: 10.1115/1.4000264.
[26] M. Ertl and B. Weigand, "ANALYSIS METHODS FOR DIRECT NUMERICAL SIMULATIONS OF PRIMARY BREAKUP OF SHEAR-THINNING LIQUID JETS," (in English), Atom. Sprays, Article vol. 27, no. 4, pp. 303-317, 2017, doi: 10.1615/AtomizSpr.2017017448.
[27] H. N. Luo, A. Delache, and S. Simoens, "Mixing of non-Newtonian inelastic fluid in a turbulent patch of T-junction," (in English), J. Non-Newton. Fluid Mech., Article vol. 283, p. 14, Sep 2020, Art no. 104307, doi: 10.1016/j.jnnfm.2020.104307.
[28] S. Xiaoqiang, Y. Hong, and C. Fuzhen, "Numerical investigation of atomization of swirling liquid sheets using transforming algorithm," (in English), Int. J. Multiph. Flow, Article vol. 152, p. 15, Jul 2022, Art no. 104084, doi: 10.1016/j.ijmultiphaseflow.2022.104084.
[29] Z. Liu, Z. Li, J. Liu, J. Wu, Y. Yu, and J. Ding, "Numerical Study on Primary Breakup of Disturbed Liquid Jet Sprays Using a VOF Model and LES Method," Processes, vol. 10, no. 6, p. 1148, 2022. [Online]. Available: https://www.mdpi.com/2227-9717/10/6/1148.
[30] A. Saha, J. D. Lee, S. Basu, and R. Kumar, "Breakup and coalescence characteristics of a hollow cone swirling spray," (in English), Physics of Fluids, Article vol. 24, no. 12, p. 21, Dec 2012, Art no. 124103, doi: 10.1063/1.4773065.