簡易檢索 / 詳目顯示

研究生: 蔡承倫
Tsai, Cheng-lun
論文名稱: 有機高分子發光二極體的自旋極化注入效應
The effect of spin-polarized injection in polymer light emitting diode
指導教授: 黃榮俊
Huang, Jung-Chun Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 自旋注入
外文關鍵詞: spin injection
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究工作為探討有機高分子發光二極體的自旋極化注入效應,我們可藉由磁電導的量測以及理論模型的假設,間接地觀察到電洞受到鐵磁陽極的極化注入現象。首先,在實驗上,使用一常用的有機高分子綠光材料PFO(polyfluorene)作為發光主動層,並以PEDOT:PSS和鈣(Ca)分別作為電洞的陽極注入和電子的陰極注入,觀察其標準綠光元件在偏壓下的基本電場特性,並根據磁場量測的基本特性去探討其磁場效應的貢獻來源,加以綜合了解載子、激發子在主動層內部的傳輸行為、作用…等等。然而,另一方面我們則使用一鐵磁材料的鎳鐵合金(Py)或鈷(Co)來取代非鐵磁材料的PEDOT:PSS作為陽極,使得電洞能夠被有效地極化注入發光主動層中與載子、激發子、極化子對等等作用,量得其正磁電導效應的增加。因此,這些實驗結果將輔助我們在有機磁效應的模型機制解釋,間接印證了激發態機制的可能性。最後,相信本論文的工作對將來的研究有所幫助,並期盼自旋極化注入的研究未來能在實際運用上有莫大的貢獻。

    In this thesis,the major job is to explore the effect of spin-polarized injection in polymer light emitting diode.We indirectly observe a hole spin-polarized injection from the ferromagnetic anode through the experimental measurement and the theoretical hypothesis.At first, in order to know what contribute the magnetic effect,we manufacture a common light-emitting diode device,using PFO (polyfluorene) material to be the active layer,PEDOT:PSS and Ca(cathcium) as the hole- and electron- injecting layer,respectively. Furthermore,from the electric and magnetic measurement,we can get some information that those particles and excitons how to transport in the materials or interact with each other.However,by an another way we replace the PEDOT:PSS with permallory or cobalt to polarize the hole’s spin and then inject to the lighting active layer to change the pairing mechanism,we will observe an enhanced magneto-response.Therefore, it is helpful to explain the mechanism of excited states from those experimental results.Finally,we believe this study is useful for the future work,and we expect the spin-polarizd research will be contributed to the practical application in future.

    第一章 介紹和動機 1-0前言 1 1-1有機半導體材料的磁場效應研究發展 2 1-2實驗研究動機 8 1-3研究大綱 10 第二章 基本理論機制 2-0前言 11 2-1有機材料的激發態 12 2-2氫原子模型的基本量子效應 14 (一)自旋軌道偶合作用(Spin-orbital coupling interaction) 15 (二)超精細結構交互作用(Hyperfine splitting interaction) 17 (三)黎曼效應作用(Zeeman effect interaction) 18 (四)交換耦合作用力(Exchange interaction) 20 2-3 磁場效應的驅動來源 22 (一)橫向傳輸能力(Intersystem Crossing,ISC) 23 (二)電子、電洞對的分離能力(Dissociation ability) 25 (三)激發子與載子的交互作用(Exciton-charge reaction) 27 2-4 激發態的能量轉換路徑-結論 29 第三章 實驗製作流程與量測分析方法 3-0 前言 31 3-1 ITO導電玻璃基板的製備 32 3-1-a 基板切割 32 3-1-b 基板清洗 32 3-1-c 黃光顯影(Photolithography) 32 3-2 有機半導體元件的製備要點 35 3-2-a 基板的清洗 35 3-2-b 陽極的製程 35 3-2-c 發光主動層的製程 37 3-2-d 陰極的製程 38 3-3 有機半導體元件的量測與分析 39 3-3-a 有機元件的封裝 39 3-3-b 元件的電性量測與分析 40 3-3-c 元件的磁性量測與分析 40 3-3-d 其他的量測與分析 43 第四章 實驗結果與討論 4-0 前言 44 4-1 PFO綠光元件的基本特性 45 4-1-a 元件的電場量測特性 45 4-1-b 元件的磁場量測特性 49 4-1-c 背景電流對激發態的影響 55 4-2 鐵磁性陽極對主動層的影響 59 4-2-a 發光鐵磁元件的基本特性 59 4-2-b 有機發光標準元件與鐵磁元件的磁場效應比較 64 4-3其他實驗的驗證 75 4-3-a改變鎳鐵合金Py厚度 75 4-3-b改變不同鐵磁材料 76 4-3-c改變主動層PFO的配藥溶劑 79 第五章 實驗結論與未來展望 5-0 前言 82 5-1實驗結論 83 5-2未來展望 84 參考資料 85

    1.C. K. Chiang, C. R. Fincher, Jr.,Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and
    A. G. Macdiarmid, Phys. Rev. Lett. 39,1098-1011 (1977).
    2.A. Khler, J. S. Wilson, and R. H. Friend, Adv. Mater. 14,701-707 (2002).
    3.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C.Bradley,
    D. A. Dos Santos, J. L. Bre das, M. Lo gdlund, and W. R. Salaneck, Nature 397,121-128 (1999).
    4.M. Lenes, G. J. A. H. Wetzelaer, Floris B. Kooistra, Sjoerd C. Veenstra,Kees J. Hummelen, and
    P. W. M. Blom, Adv. Mater. 20,2116–2119 (2008).
    5.D. Mhlbacher, M. Scharber, M. Morana, Z. Zhu,D. Waller, R. Gaudiana, and Christoph Brabec,
    Adv. Mater. 18,2884-2889 (2006).
    6.D. Braga, and G. Horowitz, Adv. Mater. 21,1473–1486 (2009).
    7.J. Cornil, Jean-Luc Brdas, J. Zaumseil, and H. Sirringhaus, Adv. Mater. 19,1791-1799 (2007).
    8.N. Matsumoto, M. Nishiyama, and C. Adachi, J. Phys. Chem. C 112,7735-7741 (2008).
    9.T. van Woudenbergh, J. Wildeman, and P. W. M. Blom,Semicond. Sci. Technol. 21,387-391 (2006).
    10.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15,1617-1622 (2005).
    11.. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M.Wohlgenannt,A.Khler,
    M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
    12.U. E. Steiner and T. Ulrich, Chem. Rev. 89,51-147 (1989).
    13.V. Ern and R. E. Merrifield, Phys. Rev. Lett. 21,9-12 (1968).
    14.R. C. Johnson and R. E. Merrifield, Phys. Rev. B 1,896 (1970).
    15.M. Pope and C. E. Swenberg, Electric processes in organic crystals and polymers 2nd edition,
    Oxford university press, ISBN 978-0-19-512963-2 (1999).
    16.E. L. Frankevich, Chem. Phys. 297,315–322 (2004).
    17.V. Dyakonov, E. Frankevich, Chem. Phys. 227,203-217 (1998).
    18.A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Bre´das, V. I. Arkhipov,
    P. Heremans,E. V. Emelianova, and H. Bassler, Phys. Rev. Lett. 93,066803 (2004).
    19.V. Dyakonov, G. Rosler, M. Schwoerer, and E. L. Frankevich, Phys. Rev. B 56,3852 (1997).
    20.E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman,
    H. H. Hrhold, Phys. Rev. B 46,9320 (1992).
    21.J. Kalinowski, M. Cocchi, D. Virgili ,P. D. Marco ,V. Fattori, Chem. Phys. Lett. 380,710–715 (2003).
    22.Z. H. Xiong, Di Wu, Z. V. Vardeny, and Jing Shim, Nature 427,821-824 (2004).
    23.T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera1, Phys. Rev.Lett. 98,
    016601 (2007).
    24.J. S. Jiang, J. E. Pearson, and S. D. Bader, Phys. Rev. B 77,035303 (2008).
    25.S. Pramanik and S. Bandyopadhyay, Phys. Rev. B 74,235329 (2006).
    26.G. Salis, S. F. Alvarado, M. Tschudy, T. Brunschwiler, and R. Allenspach, Phys. Rev. B 70,085203 (2004).
    27.J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, Phys. Rev. Lett. 100,067201 (2008).
    28.P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76,235202 (2007).
    29.Y. Wu and B. Hu, Appl. Phys. Lett. 89,203510 (2006).
    30.M. Cinchetti, K. Heimer, J. P. Wstenberg1, O. Andreyev, M. Bauer, S. Lach, C. Ziegler, Y. Gao, and
    M. Aeschlimann, Nature mater. 8,115-119 (2009).
    31.Z. Valy Vardeny, Nature mater. 8,91-93 (2009).
    32.Y. Wu, B. Hu, J. Howe, A. P. Li, and J. Shen, Phys. Rev. B 75,075413 (2007).
    33.B. Hu, Yue Wu, Z. Zhang, S. Dai, and J. Shen, Appl. Phys. Lett. 88,022114 (2006)
    34.C. J. Sun, Y. Wu, Z. Xu, B. Hu, J. Bai, J. P. Wang, and J. Shen, Appl. Phys. Lett. 90,232110 (2007).
    35.F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys. Rev. Lett. 99,257201 (2007).
    36.P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99,
    216801 (2007).
    37.V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156,757–761 (2006).
    38.T. H. Lee, T. F. Guo, J. C. A. Huang, and T. C. Wen, Appl. Phys. Lett. 92,153303 (2008).
    39.F. J. Wang, H. Bassler, and Z. V. Vardeny, Phys. Rev. Lett. 101,236805 (2008).
    40.B. Brocklehurst, Nature 221,921 (1969).
    41.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 75,4 (1999).
    42.M. A. Baldo, S. R. Forrest, Phys. Rev. B 62,10958-10966 (2000).
    43.A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam,
    Phys. Rev. Lett. 86,1358 (2001).
    44.A. Khler, D. Beljonne, Adv. Funct. Mater. 14,11-18 (2004).
    45.A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne,Z. Shuai, J. L. Bre´das, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bassler, Phys. Rev. Lett. 93,066803 (2004).
    46.E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, H. H. Hrhold,
    Phys. Rev. B 46,9320 (1992).
    47.H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson,
    D. D. C. Bradley, and J. R. Durrant, J. Am. Chem. Soc. 130,3030-3042 (2008).
    48.N. Zettili,「Quantum Mechanics Concepts and Applications」, Wiley, ISBN 0-471-48944-1.
    49.S. Gasiorowicz,「Quantum physics」3rd edition, Wiley international Edition,ISBN 0-471-42945-7.
    50.D. J.Griffiths,「Introduction to Quantum Mechanics」2nd edition, Prentice Hall,ISBN 0-13-111892-7.
    51.W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 308,93-102 (2005).
    52.M. Wohlgenannt and Z. V. Vardeny, J. Phys. :Condens. Matter 15,R83–R107 (2003).
    53.J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, V. Fattori, Chem. Phys. Lett. 380,710–715 (2003).
    54.I.V. Tolstova, A.V. Belovb, M.G. Kaplunovc, I.K. Yakuschenkoc, N.G. Spitsinac, M. M. Triebela,
    E. L. Frankevicha, J. Lumin. 112,368-371 (2005).
    55.Z. Xu and B. Hu, Adv. Funct. Mater. 18,2611-2617 (2008).
    56.B. Hu and Y. Wu, Nature mater. 6,985-991 (2007).
    57.H. D. Burrows, J. S. de Melo, C. Serpa,L. G. Arnaut, A. P. Monkman, I. Hamblett, and S. Navaratnam, J. Chem. Phys. 115,9601 (2001).
    58.S. Gambino, I.D.W. Samuel, H. Barcena, P.L. Burn, Organic Electronics 9,220-226 (2008).
    59.C. M. Yang, H. H. Liao, S. F. Horng, H. F. Meng, S. R. Tseng, C. S. Hsu, Synth. Met. 158,25-28 (2008).
    60.Y. Wu, Z. Xu, B. Hu, and J. Howe, Phys. Rev. B 75,035214 (2007).
    61.N. Rolfe, P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 104,083703 (2008).
    62.Y. Sheng, T. D. Nguyen, G. Veeraraghavan, . Mermer, M. Wohlgenannt, S. Qiu ,and U. Scherf, Phys. Rev. B 74,045213 (2006).
    63.T. D. Nguyen, J. Rybicki, Y. Sheng, and M. Wohlgenannt, Phys. Rev. B 77,035210 (2008).

    下載圖示 校內:2014-07-10公開
    校外:2019-07-10公開
    QR CODE