簡易檢索 / 詳目顯示

研究生: 饒貫玄
Rao, Guan-Syuan
論文名稱: 脈衝雷射沉積法成長Bi2Te3/Sb2Te3多層膜熱電特性之研究
Study of growth Bi2Te3/Sb2Te3 thermoelectric properties of multilayer by Pulsed laser Deposition
指導教授: 黃榮俊
Huang, Jung-Chun-Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 46
中文關鍵詞: 拓樸絕緣體熱電效應
外文關鍵詞: Topological insulator, alloy, thermoelectric-effect
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過脈衝雷射沉積法將Bi2Te3與Sb2Te3成長在無晶相之鈉玻璃基板,並將其長成多層膜結構,實驗分為兩部分,一部分是固定總厚度(96nm)改變層數分別從2層到24層,之後透過霍爾量測確認材料的傳輸性質,發現在鈉玻璃基板上成長的Bi2Te3 Sb2Te3多層膜是P型、,再利用四點量測得到電阻率;透過Seebeck effect 確認材料Seebeck 係數隨層數變化,發現發現12層(8nm)有最高的Seebeck與PF(Power Factor)。之後第二部分是就是由8nm的參數最變化,固定雙層膜(8nm/8nm)的厚度改變總厚度,發現當層數增加的時候Seebeck也跟著增加但是在10層的時候達最大值,不會無限上升。由此可以知道介面可以有效提升Seebeck提高PF,但是由於電阻率也會上升會降低PF,但是Seebeck的效應是平方倍,所以整體PF還是上升的。

    In this work we report the synthesis of bismuth tellurium(Bi2Te3) and Antimony telluride(Sb2Te3)thin films on soda glass substrate by using pulsed laser deposition(PLD) and we have fabricated Bi2Te3/Sb2Te3 alternate layered SL films by (PLD) and compared the differences between them.

    目錄 Abstract I Summary I Introtuction I Materials and Methods II Result and Discussion II 摘要 V 致謝 VI 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究動機 8 第二章 基本理論 9 2-1 薄膜成長理論 9 2-1-1 成長模式 10 2-1-2 成長理論 12 2-2 熱電理論 14 2-2-1 熱電效應 14 2-2-2 熱電優值(Thermoelectric Figure of Merit) 15 第三章 儀器介紹與實驗步驟 19 3-1 樣品成長儀器:Pulse Laser Deposition(PLD) 19 3-2 實驗量測儀器 22 3-2-1 X-ray繞射儀 22 3-2-2 霍爾效應量測(Hall Effect) 24 3-2-3 Seebeck coefficient量測 25 3-2-4 電阻率測量(四點電性量測) 27 3-3 實驗步驟 30 3-4 電極製作(E-beam Evaporator) 33 3-4-1 E-beam Evaporator介紹 33 3-5 實驗方法 34 第四章 實驗結果與討論 35 4.1 多層膜成長溫度選擇 35 4.2固定總厚度改變層數實驗結果 37 4.3固定雙層膜厚度改變總厚度實驗結果 39 4-4與單層膜的熱電性質比較結果 42 第五章 結論 44 文獻參考 45

    文獻參考
    [1] Goldsmid, H. J., & Douglas, R. W. (1954). The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 5(11), 386.
    [2] Lange, R. G., & Carroll, W. P. (2008). Review of recent advances of radioisotope power systems. Energy Conversion and Management, 49(3), 393-401.
    [3] Snyder, G. Jeffrey, and Eric S. Toberer. "Complex thermoelectric materials."Nature materials 7.2 (2008): 105-114.
    [4] Zhang, Xiangpeng, et al. "Investigation on the electrical transport properties of highly (00l)-textured Sb2Te3 films deposited by molecular beam epitaxy."Journal of Applied Physics 115.2 (2014): 024307.
    [5] Hinsche, Nicki F., et al. "Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films." ACS nano 9.4 (2015): 4406-4411.
    [6] Wang, Y., Xiu, F., Cheng, L., He, L., Lang, M., Tang, J., ... & Zou, J. (2012). Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano letters, 12(3), 1170-1175.
    [7] Broido, D. A., and T. L. Reinecke. "Thermoelectric power factor in superlattice systems." Applied physics letters 77.5 (2000): 705-707.
    [8] Heinrich, B., & Bland, J. A. C. (1994). Ultrathin Magnetic Structures II (Vol. 1). Springer-Verlag Berlin Heidelberg.
    [9] Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., ... & Chen, X. (2008). High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320(5876), 634-638.
    [10] Hendrickson, J. R. (1980). New torsional resonance technique for study of magnetic susceptibility of glass. Journal of Non-Crystalline Solids, 38, 311-316.
    [11] Schumacher, C., Reinsberg, K. G., Akinsinde, L., Zastrow, S., Heiderich, S., Toellner, W., ... & Bachmann, J. (2012). Optimization of Electrodeposited p‐Doped Sb2Te3 Thermoelectric Films by Millisecond Potentiostatic Pulses.Advanced Energy Materials, 2(3), 345-352.
    [12] Boulouz, A., Chakraborty, S., Giani, A., Delannoy, F. P., Boyer, A., & Schumann, J. (2001). Transport properties of V–VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices. Journal of Applied Physics, 89(9), 5009-5014.
    [13] Aabdin, Z., Peranio, N., Winkler, M., Bessas, D., König, J., Hermann, R. P., ... & Eibl, O. (2012). Sb2Te3 and Bi2Te3 Thin Films Grown by Room-Temperature MBE. Journal of electronic materials, 41(6), 1493-1497.
    [14] Venkatasubramanian, R., Siivola, E., Colpitts, T., & O'quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature,413(6856), 597-602.
    [15] Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis,22(10), 1027-1036.
    [16] Soni, A., Yanyuan, Z., Ligen, Y., Aik, M. K. K., Dresselhaus, M. S., & Xiong, Q. (2012). Enhanced Thermoelectric Properties of Solution Grown Bi2Te3–x Se x Nanoplatelet Composites. Nano letters, 12(3), 1203-1209.
    [17]國立成功大學林明昱(2015)
    [18]國立成功大學黃子勳(2013)

    下載圖示 校內:2017-09-01公開
    校外:2017-10-30公開
    QR CODE