簡易檢索 / 詳目顯示

研究生: 廖尉廷
Liao, Wei-Ting
論文名稱: 一修改型二步驟臨界值法之多重解析度運動估測
A Multiresolution Motion Estimation Technique with Modified Two-Step Thresholding
指導教授: 陳進興
Chen, Chin-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 66
中文關鍵詞: 小波轉換多重解析度運動估測
外文關鍵詞: wavelet transform, multiresolution motion estimation
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Zhang和Zafar提出基於小波轉換與多重解析度的運動估測(MRME)視訊壓縮演算法。與傳統的方塊比對演算法(BMA)相比,該演算法減少計算量且能較有效地表示訊號。MRME使用完全搜尋演算法(FSA)搜尋子頻帶影像的運動向量,但其仍可能找不到適合的運動向量。Jinwen Zan提出一新的MRME演算法,其使用一臨界值法丟棄不適合的匹配方塊。但是只在最低解析度的子頻帶影像中作運動估測,因此重建影像品質下降。

    本論文結合上述兩種演算法的優點,使用一修改型二步驟臨界值法搜尋運動向量。在步驟一,第一個臨界值決定運動向量是否需要進一步更新。在步驟二,第二個臨界值決定匹配方塊是否適合,若不適合,方塊標記為intracoded。本演算法對於影像中不同運動複雜度的方塊,使用不同程度的計算量,因此節省運動估測的計算量。此外,丟棄不適合的匹塊方塊提升運動估測的效能。

    實驗結果顯示,在幾種不同運動特性的視訊序列中,我們的演算法比MRME及新的MRME提高了0.2 - 0.7 dB 的影像品質。新的MRME的執行時間比MRME少了78%,而我們演算法的執行時間比MRME少了20% - 50%。

    A video compression algorithm based on the wavelet transform and multiresolution motion estimation (MRME) was proposed by Zhang and Zafar. As compared to conventional block matching algorithm, it reduces the computational load and exploits the efficient representation provided by the wavelet transform. In the MRME technique, the full search algorithm (FSA) is used to search the correct motion vectors in subimages. However, it is could not always find a good match. A new MRME has been proposed by Jinwen Zan. In the technique, the mismatched blocks are discarded by a thresholding. But the motion estimation is only implemented in the lowest resolution subimage. This results the deterioration of the quality of the reconstructed images.

    We take the advantages of both of the above algorithms. We modify the new MRME technique by using a two-step thresholding for estimating the motion vectors. In the first step, the first threshold is used to determine if the motion vectors need to be refined with further searching. In the second step, if the dissimilarity between the block and the matched block is greater than the second threshold, the block is labeled as intracoded. Via the proposed algorithm, different computational efforts can be made for regions having different complexity of motion and thus saving computation of motion estimation. Besides, the mismatched block can be discarded and thus improving the motion estimation performance.

    The experiments have shown better results from several test video sequences with various motion characteristics. The proposed algorithm gives a PSNR of about 0.2 - 0.7 dB better than either MRME or new MRME. The processing time of new MRME is about 78% less than that of MRME. And the processing time of the proposed algorithm is about 20% - 50% less than that of MRME.

    摘要 i Abstract iii Contents v Figure Captions vii Table Captions ix CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Recent Works 4 1.3 Thesis Organization 6 CHAPTER 2 DISCRETE WAVELET TRANSFORMS 7 2.1 Discrete Wavelet Transform and Image Compression 7 2.2 Wavelet Transforms 10 2.2.1 Continuous Wavelet Transforms and Wavelet Series 10 2.2.2 Concept of Multiresolution Analysis 14 2.2.3 Filter Bank and the Pyramid Algorithm 17 2.3 Extension to Two-Dimensional Signals 20 2.4 The Lifting Scheme 22 CHAPTER 3 VIDEO CODING 26 3.1 Temporal Redundancy Reduction 27 3.1.1 Motion Estimation 28 3.1.2 Full Search Algorithms (FSA) 30 3.1.3 MRME Algorithms 31 3.2 Set Partitioning in Hierarchical Trees (SPIHT) 33 3.3 The Motion-Compensated Wavelet Coding Scheme 37 3.4 Video Quality and Performance Evaluation 38 CHAPTER 4 THE PROPOSED ALGORITHM FOR MRME 39 4.1 The Proposed Thresholding Technique for Saving the Computation of MRME 40 4.2 The Proposed Thresholding Technique for Discarding the Mismatched Block 43 4.3 The Proposed Algorithm for Improving the MRME 45 4.4 Coding the Key and Residual Frames 47 CHAPTER 5 EXPERIMENT RESULTS AND DISCUSSION 49 CHAPTER 6 CONCLUSION 63 REFERENCES 64

    [1] ITU-T Rec. H.264/ISO/IEC 11496-10, “Advanced Video Coding,” Final Committee Draft, Document JVT-E022, September 2002.
    [2] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image Coding Using Vector Quantization in the Wavelet Transform Domain,” Proc. IEEE ICASSP, 1990, 2297-2300.
    [3] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image Coding Using Wavelet Transform,” IEEE Trans. on, Vol. 1, Issue 2, pp. 205-220, Apr. 1992.
    [4] G. Van der Auwera, A. Munteanu, G. Lafruit, J. Cornelis, “Video Coding Based on Motion Estimation in the Wavelet Detail Images,” Speech and Signal Processing, Vol. 5, 12-15 May 1998 Page(s):2801-2804.
    [5] M. Barlaud, P. Sole, M. Antonini, and P. Mathieu, “A Pyramidal Scheme for Lattice Vector Quantization of Wavelet Transform Coefficients Applied to Image Coding,” Proc. IEEE ICASSP, 1992, 23-26.
    [6] P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans. Commun. 31, 1983, 532-540.
    [7] Weiting Cai, and Malek Adjouadi, “Wavelet-Domain Shift Invariant Motion Estimation and Compensation,” Video and Speech Processing, 20-22 Oct. 2004, Page(s):49-52.
    [8] R. L., Jr. Claypoole, R. G. Baraniuk, and R. D. Nowak, “Adaptive Wavelet Transforms via Lifting,” Proc. Int. Conf. ASSP, Vol. 3, pp. 1513-1516, May 1998.
    [9] I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analysis,” IEEE Trans. on Inform. Theory, Vol. 36, No. 5, pp. 961-1005, September 1990.
    [10] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-Compensated Interframe Coding for Video Conferencing,” Proc. NTC81, pp. C9.6.1-9.6.5, New Orleans, La. Nov. 1981.
    [11] Weiping Li, Jens-Rainer Ohm, Mihaela van der Schaar, Hong Jiang, and Shipeng Li, “MPEG-4 Video Verification Model Version 18.0,” ISO/IEC JTC1/SC29 /WG11 N3908, January 2001/Pisa.
    [12] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step Search Algorithm for Block Motion Estimation,” IEEE Trans. Circuits Syst. Video Technol., Vol. 4, pp. 438-443, Aug. 1994.
    [13] S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. on Pattern Anal. Mach. Intell. Vol. 11, No. 7, pp. 674-693, July 1989.
    [14] S. Mallat, “Multifrequency Channel Decompositions of Images and Wavelet Models,” IEEE Trans. Acoust. Speech Signal Process. 17, 1989, 2091-2110.
    [15] M. K. Mandal, E. Chan, X. Wang, and S. Panchanathan, “Multiresolution Motion Estimation Techniques for Video Compression,” Opt. Eng., Vol. 35, pp. 128-136, Jan. 1996.
    [16] L. M. Po and W. C. Ma, “A Novel Four-Step Search Algorithm for Fast Block Motion Estimation,” IEEE Trans. Circuits Syst. Video Technol., Vol. 6, pp. 313-317, June. 1996.
    [17] A. Said and W. A. Pearlman, “A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees,” IEEE Trans. on Circuits and System for Video Technology 6, 99. 243-250, June 1996.
    [18] P. Strobach, “Tree-Structured Scene Adaptive Coder,” IEEE Trans. Commun., Vol. 38, pp. 477-486, Apr. 1990.
    [19] W. Sweldens, “The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets,” Appl. Comput. Harmon. Anal., 3(2):186-200, 1996.
    [20] J. Wei and Z. N. Li, “An Enhancement to MRMC Scheme in Video Compression,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No. 3, pp. 564-568, June 1997.
    [21] I. H. Witten, R. M. Neal and J. G. Cleary, “Arithmetic Coding for Data Compression,” Communications of the ACM, Vol. 30, No.6, pp 520-540, June 1987.
    [22] J. Woods and S. O’Neil, “Subband Coding of Images,” IEEE Trans. Acoust. Speech Signal Process. 34, 1986, 1278-1288.
    [23] S. Zafar, Y.Q. Zhang and B.J. Jabbari, “Multiscale Video Representation Using Multiresolution Motion Compensation and Wavelet Decomposition,” IEEE J. Select. Areas Commun., Vol. 1, pp. 24-35, January 1993.
    [24] Jinwen Zan, M. Omair Ahmad, and M.N.S. Swamy, “A Multiresolution Motion Estimation Technique with Indexing,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, Issue 2, Feb. 2006 Page(s):157-165.
    [25] Jinwen Zan, M. Omair Ahmad, and M.N.S. Swamy, “Wavelet Based Multi- resolution Motion Estimation through Median Filtering,” Speech and Signal Processing, Vol. 4, 13-17 May 2002 Page(s):3273-3276.
    [26] Y.-Q. Zhang and S. Zafar, “Motion-Compensated Wavelet Transform Coding for Color Video Compression,” IEEE Trans. Circuits Syst. Video Technol., Vol. 2, pp. 285-296, September 1992.
    [27] S. Zhu and K. K. Ma, “A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation,” IEEE Trans. Image Processing, Vol. 9, pp. 287-290, Feb. 2000.

    下載圖示 校內:2009-07-25公開
    校外:2010-07-25公開
    QR CODE