簡易檢索 / 詳目顯示

研究生: 廖崇耀
Liao, Chong-Yao
論文名稱: 一種依擴散現象而設計之被動式微混合器
A Passive Micromixer Design Based on Molecular Diffusion
指導教授: 潘大知
Pan, Dartzi
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 分子擴散微混合器
外文關鍵詞: Micromixer, Molecular Diffusion
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以計算流體力學為工具,以一T型管為混合器基本構型,在低雷諾數下以分子擴散現象為混合機制,探討混合時間、混合長度、混合面積、混合體積及管道兩側壓差和主流道幾何形狀之關係。研究結果顯示,當主流道寬度縮減時,可使分子擴散距離縮短,所需擴散時間變短,因此可縮短完全混合所需長度,若將T型管主管道往軸向繞折集中於一接近正方型之區域,可有效防止主管道的長度過度增加。在三維模擬中,縮減主流道寬度的同時擴張第三維深度以維持管道截面積不變,可有效降低推動流體所需之壓差。若為避免管道深度之增加,可在入口處加一特殊設計之轉向接頭使混合界面由垂直方向轉為水平方向。

    This study adopts Computation Fluid Dynamics (CFD) as the research tool to study the mixing efficiency of a T-tube micromixer desigh based on the principle of molecular diffusion at low Reynolds number flow regime. The effect of reducing channel width or depth on the mixing efficiency is studied. It is found that a reduced channel width can effectively reduce the required time and channel length for total mixing. The long and straight main channel of the mixer can be tightly wound into a roughly squared region to prevent the excessive increase of mixer dimension. In 3D simulation, as the channel width is being reduced, the channel depth can be enlarged to keep a constant cross section area, such that the pressure difference required to drive the channel flow will not undergo dramatic increase. Finally, to prevent the possible excessive increase of channel depth, a flow-direction converter can be applied to rotate the orientation of the contact surface between the two mixing fluids from vertical to horizontal.

    目錄 中文摘要.................................................Ⅰ 英文摘要................................................ Ⅱ 目錄.....................................................Ⅲ 表目錄...................................................Ⅵ 圖目錄...................................................Ⅷ 符號說明................................................ XI 第一章 緒論..............................................1 1-1 前言.................................................1 1-2 微混合器分類........................................ 3 1-2.1 主動式微混合器.................................... 4 1-2.2 被動式微混合器.....................................6 1-2.2.1 多層次(Lamination)混合器.........................6 1-2.2.2 注射式混合器(Injection Micromixer)...............7 1-2.2.3 利用二次流現象(Secondary Flow)的混合器...........8 1-2.2.4 利用分離現象(Separation)的混合器.................9 1-2.2.5分子擴散作用混合器(Molecular Diffusion Micromixer).9 1-3 研究概念............................................11 第二章 統御方程式與數值方法.............................12 2-1 基本假設............................................12 2-2 統御方程式..........................................12 2-3 CFD流場模擬工具.....................................14 2-4 邊界條件之設定......................................14 2-5 重要參數............................................15 第三章 二微混合器之數值分析.............................17 3-1 T型管微混合器.......................................17 3-2 T型管加繞折管道.....................................20 3-3 基本擴散原理驗證及壓差公式驗證..................... 26 3-3.1 基本擴散原理驗證..................................26 3-3.2 二維壓差公式之驗證................................35 3-4 完全混合之主流道長度及壓差..........................39 3-5 完全混合之被動式微混合器與面積......................42 第四章 三微混合器之數值分析.............................50 4-1 三維壓差公式之驗證..................................50 4-2 三維Z軸擴張混合器...................................53 4-3 運用一特殊轉向接頭..................................58 第五章 結論.............................................65 參考文獻.................................................68

    [1] Nguyen, N. T.,and Wu, Z., “Micromixers-a review,” Journal of Micromechanics and Microengineering, NO. 15, R1-R16, 2005.

    [2] Glasgow, I., and Aubry, N., “Enhancement of Microfluidic Mixing Using Time Pulsing,” Lab on a Chip, No.3, pp. 114-120, 2003.

    [3]黎康熙, “利用入口脈動流之主動式微混合器研究,” 國立成功大學航空太空研究所碩士論文, 中華民國95年6月.

    [4] Wu H. Y., and Liu C. H., “A Novel Electrokinetic Micromixer,” The 12th international Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003.

    [5] Schwesinger, N., Frank, T., and Wurmus, H., “A Modular micro-fluidic System with an Integrated Micromixer,” Journal of Micromechanics and Microengineering, Vol.6, No.1, pp. 99-102, 1996.

    [6] Fiona, G. B., Andrew, J. D., and Andreas M.,
    “Microstructure for efficient continuous flow mixing, ”Analytical Communications, No.36, pp. 213-215, 1999.

    [7] Miyake, R., Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., “Micromixer with Fast Diffusion,” An Investigation of Microstructures, Sensors, Actuators, Machines and Systems. IEEE, pp. 248-283, 1993.

    [8] Friedhelm, S. and Steffen, H., “Simulation of Helical Flows in Microchannels, ”American Institute of Chemical Engineerings, Vol. 50, No. 4, pp. 771-778, 1996.

    [9] Virginie, M., Jacques, J., and Hubert, H. G., “Mixing Processes in a Zigzag Microchannel:Finite Element Simulations and Optical Study,” Analytical Chemistry, No.74, pp. 4279-4286, 2002.

    [10] Veenstra, T. T., Lammerink, T.S.J., Elwenspoek, M. C., and Berg, A. V. D., “Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,” Journal of Micromechanics and Microengineering, No.9, pp. 199-202, 1999.

    下載圖示 校內:2009-08-15公開
    校外:2009-08-15公開
    QR CODE