| 研究生: |
蔡才暘 Tsai, Tsai-Yang |
|---|---|
| 論文名稱: |
評估水庫操作最佳化在不同情境下之自然流態變化及經濟成本 Assessing Natural Flow Regimes Alterations and Economic Cost under Different Scenarios of Reservoir Operation Optimization |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 自然流態 、環境流量 、水庫最佳化操作 、粒子群演算法 、水文改變指標 、變化範圍法 |
| 外文關鍵詞: | Natural Flow Regime, Environmental Flow, Indicator of Hydrologic Alteration, Range of Variability Approach, Reservoir Operation Optimization |
| 相關次數: | 點閱:44 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數十年以來,隨著人類的人口急遽增加,水資源的需求也成為世界各國的重要民生問題,進而造成全世界水庫的數量快速增加。過度的攔截河水會使水庫下游河流的水文特性產生極大的改變,生態系統也會產生失衡,河口沙洲的侵蝕以及堆積的平衡被破壞,最終產生難以復原的損失。台灣的地理以及降雨特性使得水庫成為水資源分配的要角,近年來環保意識高漲以及科技園區用水量的增加也造成水資源的平衡開始瀕臨極限,在不易做到開源的情形下,節流的方法成為許多研究中的重要課題。
本研究透過最佳化粒子群演算法(PSO)來模擬水庫操作的最佳化方式,以曾文及烏山頭水庫系統作為研究區域,藉由歷史水文數據;設定生態RVA(Range of Variability Approach)指標、IHA(Indicator of Hydrologic Alteration)分數指標、人類缺水指標及經濟(農業、工業、排砂、發電)作為三大目標函數;蓄水規線作為決策變數,嘗試以日流量的精細操作,來尋找多目標的最佳解,期望能夠在生態以及人類經濟需求中找出最具效益的操作規線,能達到一定的經濟目標外,也能盡可能地降低對下游生態系的衝擊。
RVA指標具有方便計算和反映水文改變程度的優點,但同時也具有無法辨別極端值以及整體IHA指標分布位移的缺點。在本研究中嘗試建立了一個簡單的IHA指標分數表,並將其加入目標函數之中,期望能夠降低RVA指標的缺點,並透過兩種方式的合併來正確的檢視下游的河流水文變化。
本研究分別依照缺水指標、IHA分數指標的有無組成三個不同情境進行最佳化演算,三個情境的生態指標與現行水庫相比,都是最佳化模式的表現較佳,但是在工業效益、農業效益、發電效益以及人類缺水指標的部分則是現行水庫模式較好。透過實際量化經濟指標能夠更直接的找出最具效率的水資源分配方式,每單位水資源帶來的效益更高。三個情境當中,情境二同時考慮RVA指標、IHA分數指標以及人類缺水指標,為三個情境當中最具平衡性的方案,但依照水資源管理者的需求可以選擇不同的方案。IHA分數指標應用在曾文水庫下游中正橋的研究區域,目的是改善RVA指標在高低門檻值外極端值的問題,在最佳化結果中的分布情況確實有達到預期的效果,改善RVA指標的缺點,令最佳化模式的環境流量更符合自然狀態的流量分布變化。
Environmental flow requirement has been used to improve the downstream river ecosystem of reservoir. Releasing environmental flow will cause economic losses. It is difficult to know the exact economic losses for improving river ecosystem. For water resources managers, a more intuitive method to trade-off economy and ecosystem is necessary. Therefore, this study combined Range of Variability Approach (RVA), Indicator of Hydrologic Alteration (IHA), and quantified economic losses to design a set of reservoir operation simulations that are close to the current situation. In the optimization model, storages were treated as decision variables to compare the multi-objective results of different scenarios. Based on the flow data and economic data of Zengwen and Wushantou Reservoirs, the rules for water use were designed. There were three different scenarios in the optimization model that including different objective functions. The optimized objective functions included objectives such as human water shortage, economic benefit, and ecological objective. In addition, this study focused on the defect of RVA method. We proposed a simple method (IHA score indicator) to improve the RVA indicator. IHA score indicator could support RVA method and find out the reservoir operating storage rule curve that is more in line with the natural state. The reservoir operating storage rule curve of the optimized model results would provide the operating rules for the Zengwen and Wushantou Reservoir System. It would be to meet human, and ecological needs to the greatest extent under unknown hydrological conditions in the future. According to the different scenarios, suitable reservoir operation rules could be arranged, which could provide water resources managers as a reference when making decisions.
Acreman, M., Arthington, A. H., Colloff, M. J., Couch, C., Crossman, N. D., Dyer, F., et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Frontiers in Ecology and the Environment, 12(8), 466-473. (2014).
Arthington, A. H., Kennen, J. G., Stein, E. D., & Webb, J. A. Recent advances in environmental flows science and water management—Innovation in the Anthropocene. Freshwater Biology, 63(8), 1022-1034. (2018).
Bellman, R. The theory of dynamic programming: Rand corp santa monica ca. (1954).
Bunn, S. E., & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental management, 30(4), 492-507. (2002).
Chang, F. J., Chen, L., & Chang, L. C. Optimizing the reservoir operating rule curves by genetic algorithms. Hydrological Processes: An International Journal, 19(11), 2277-2289. (2005).
Cushing, C., McIntire, C., Cummins, K., Minshall, G., & Petersen, R. Relationships among chemical, physical, and biological indices along river continua based on multivariate analyses. Archiv für Hydrobiologie, 98(3), 317-326. (1983).
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., et al. Freshwater biodiversity: importance, threats, status and conservation challenges. [Review]. Biological Reviews, 81(2), 163-182. (2006).
Eberhart, R., & Kennedy, J. Particle swarm optimization. Paper presented at the Proceedings of the IEEE international conference on neural networks. (1995).
Falkenmark, M., Rockstrom, J., & Rockström, J. Balancing water for humans and nature: The new approach in ecohydrology: Earthscan. (2004).
Gleick, P. H. Water and conflict: Fresh water resources and international security. International security, 18(1), 79-112. (1993).
Gorla, L., & Perona, P. On quantifying ecologically sustainable flow releases in a diverted river reach. Journal of Hydrology, 489, 98-107. (2013).
Horwitz, R. J. Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs, 48(3), 307-321. (1978).
Hu, W.-w., Wang, G.-x., Deng, W., & Li, S.-n. The influence of dams on ecohydrological conditions in the Huaihe River basin, China. Ecological engineering, 33(3-4), 233-241. (2008).
Jabr, R. A., Coonick, A. H., & Cory, B. J. A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Transactions on power systems, 15(3), 930-936. (2000).
Jager, H. I., & Smith, B. T. Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values? River research and Applications, 24(3), 340-352. (2008).
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the Proceedings of ICNN'95-international conference on neural networks.
Lai, J.-S., & Shen, H. W., Flushing sediment through reservoirs. Journal of Hydraulic Research, 34(2), 237-255. (1996).
Laizé, C., Acreman, M., Schneider, C., Dunbar, M., Houghton‐Carr, H., Flörke, M., et al. Projected flow alteration and ecological risk for pan‐European rivers. River Research and Applications, 30(3), 299-314. (2014).
Loucks, D. P., & Van Beek, E. Water resource systems planning and management: An introduction to methods, models, and applications: Springer. (2017).
Luo, P., He, B., Takara, K., Xiong, Y. E., Nover, D., Duan, W., et al. Historical assessment of Chinese and Japanese flood management policies and implications for managing future floods. Environmental Science & Policy, 48, 265-277. (2015).
Luo, P. P., Sun, Y. T., Wang, S. T., Wang, S. M., Lyu, J. Q., Zhou, M. M., et al. Historical assessment and future sustainability challenges of Egyptian water resources management. [Article]. Journal of Cleaner Production, 263, 11. (2020).
Novak, R. Final EPA-USGS technical report: Protecting aquatic life from effects of hydrologic alteration: US Department of the Interior, US Geological Survey. (2016).
Papageorgiou, L. G., & Fraga, E. S. A mixed integer quadratic programming formulation for the economic dispatch of generators with prohibited operating zones. Electric power systems research, 77(10), 1292-1296. (2007)
Poff, N. L. Beyond the natural flow regime? Broadening the hydro‐ecological foundation to meet environmental flows challenges in a non‐stationary world. Freshwater Biology, 63(8), 1011-1021. (2018).
Poff, N. L., & Allan, J. D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76(2), 606-627. (1995).
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. The natural flow regime. BioScience, 47(11), 769-784. (1997).
Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming: John Wiley & Sons, Inc.
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849-873. (2019).
Richter, B. D., Baumgartner, J. V., Braun, D. P., & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 14(4), 329-340. (1998).
Richter, B., Baumgartner, J., Wigington, R., & Braun, D. How much water does a river need? Freshwater biology, 37(1), 231-249. (1997).
Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10(4), 1163-1174. (1996).
Shi, Y., & Eberhart, R. A modified particle swarm optimizer.’Proceedings of the IEEE Congeress on Evolutionary Computation, Piscataway, USA. (1998).
Shi, Y., Eberhart, R., & Chen, Y. Implementation of evolutionary fuzzy systems. IEEE Transactions on fuzzy systems, 7(2), 109-119. (1999).
Stoffels, R. J., Bond, N. R., & Nicol, S. Science to support the management of riverine flows. Freshwater Biology, 63(8), 996-1010. (2018).
Suen, J.-P., & Herricks, E. E. Developing fish community based ecohydrological indicators for water resources management in Taiwan. Hydrobiologia, 625(1), 223-234. (2009).
Suen, J. P., & Eheart, J. W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water resources research, 42(3). (2006).
Takriti, S., & Krasenbrink, B. A decomposition approach for the fuel-constrained economic power-dispatch problem. European journal of operational research, 112(2), 460-466. (1999).
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. Global threats to human water security and river biodiversity. nature, 467(7315), 555-561. (2010).
World Commission on Dams, Dams and development: A new framework for decision-making: The report of the world commission on dams: Earthscan. (2000).
Yang, Y. C. E., Cai, X., & Herricks, E. E. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resources Research, 44(4). (2008).
Zhang, Z., Jiang, Y., Zhang, S., Geng, S., Wang, H., & Sang, G. An adaptive particle swarm optimization algorithm for reservoir operation optimization. Applied Soft Computing, 18, 167-177. (2014).
行政院農業委員會,農業統計年報,行政院農業委員會,2015-2019。
行政院國家永續發展委員會(2018),107年永續發展指標系統評量結果報告第二版,行政院國家永續發展委員會
經濟部水利署,各項用水統計資料庫,經濟部水利署。取自http://wuss.wra.gov.tw/annuals.aspx
經濟部水資源局,水資源政策白皮書,經濟部水資源局,1996。
經濟部水利署南區水資源局,曾文水庫營運月報表,經濟部水利署南區水資源局,1982-2017。
經濟部水利署南區水資源局,曾文水庫水位蓄水量對照表,經濟部水利署南區水資源局。
經濟部,曾文水庫運用要點,經濟部,2017a。
經濟部,曾文水庫水門操作規定,經濟部,2017b。
經濟部水利署,台灣地區水資源開發綱領計畫,經濟部水利署,2009。
經濟部水利署南區水資源局,曾文水庫網頁介紹,取自https://www.wrasb.gov.tw/business/business02Tzeng.aspx?no=14&ShowNo=120&no2=137&no3=43&wid=83
蔡雨璇,結合乾旱指標之多水庫系統環境流量管理策略。國立成功大學水利及海洋工程學系碩士論文,台南市,2019。取自https://hdl.handle.net/11296/xtrqru
楊意凡,考量排砂與自然流態於水庫最佳化操作。國立成功大學水利及海洋工程學系碩士論文,台南市,2020。取自https://hdl.handle.net/11296/t8wts9
蕭政宗、吳富春(2004),集集攔河堰最佳引水與河川生態流量之研究,第十四屆水利工程研討會,交通大學。
蕭政宗、吳富春(2005),變異範圍法 RVA 應用於河川生態流量之規劃,第二屆生態工程學術研討會,台灣大學。
顏沛華、周乃昉、蔡長泰,曾文、烏山頭水庫串聯運用引水量蒸發滲漏輸水損失問題探討改善研究,成大水利海洋研究發展文教基金會,2000。