| 研究生: |
陳宜榛 Chen, Yi-Chen |
|---|---|
| 論文名稱: |
以二次諧波與簡化鍵超極化率模型來分析超薄膜磷摻雜矽結構 Analyzing Phosphorus doped Si ultrathin film by using second harmonic generation and Simplified bond-hyperpolarizability model |
| 指導教授: |
羅光耀
Lo, Kuang-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 二次諧波產生(SHG) 、摻磷矽 、退火 、非線性光學 、離子注入 、原位摻雜 、SBHM |
| 外文關鍵詞: | Second-harmonic generation(SHG), phosphorus-doped silicon, RTA annealing, nonlinear optics, ion implantation, in-situ doping, SBHM |
| 相關次數: | 點閱:53 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討了摻磷矽樣品經過不同退火時間後的二次諧波產生(Second Harmonic Generation, SHG)特性。我們選擇了兩種類型的摻磷矽樣品進行比較:一種是經過離子注入(ion-implanted)技術摻磷的Si(111)樣品,另一種是通過原位摻雜(in-situ doping)技術摻磷的Si(100)樣品。每種樣品分別在不同的退火時間下進行處理,以研究退火過程對材料非線性光學特性的影響。
在實驗中,我們使用二次諧波產生技術對兩種樣品進行光學測量,包括非線性極化強度 P^((2))與電場 E^((2ω)) 的計算公式。通過設置多種參數,如振幅、相位、基底和表面態的非線性係數,我們確定了材料的二階非線性系數 χ^((2))。實驗結果顯示,不同退火時間對兩種樣品的二次諧波強度均有顯著影響。具體而言,經過離子注入摻磷的Si(111)樣品利用傳統的傅立葉分析方法,接著我們以其作為SBHM模擬中,各個數值(a_1 、a_2 、a_3 、a_4 、a_b 、a_sd)的基礎,去模擬分析不同退火條件下原位摻雜的Si(100)樣品。
我們的數據擬合結果基於理論模型,考慮了材料的非線性極化強度及其電場分量,從而揭示了摻磷濃度和退火時間對材料非線性光學響應的影響機制。這些發現不僅有助於理解摻雜和熱處理對矽材料光學特性的調控作用,還對於設計和優化矽基光電子器件具有重要參考價值。通過這項研究,我們展示了不同退火時間下摻磷矽樣品的SHG特性,透過SBHM分析方式來分析離子佈值經退火後的品質分析,證實由於傳統傅立葉分析,特別對於尚未完成結晶之破壞。藉由此結果,可以進一步利用SBHM來分析CVD成長 in-situ doping Si 超薄膜之結構變遷。這此作除了發展一套可以分析超薄膜的退火分析之實驗方式與機制,更可以從SBHM的結果了解超薄膜結構之鍵結形式。
This study thoroughly investigates the Second Harmonic Generation (SHG) characteristics of phosphorus-doped silicon samples following various annealing durations. The research focuses on comparing two types of phosphorus-doped silicon samples: one doped using the ion-implantation technique on Si(111) and the other doped using in-situ doping on Si(100). The samples were subjected to different annealing times to examine the impact of the annealing process on the nonlinear optical properties of the materials.
In the experiments, we used SHG techniques for optical measurements on both types of samples, including the calculation formulas for the nonlinear polarization intensity P^((2))and the electric field E^((2ω)). By setting multiple parameters such as amplitude, phase, and the nonlinear coefficients of bulk and surface states, we determined the second-order nonlinear coefficients χ^((2)) of the materials. The experimental results showed that different annealing times had significant effects on the SHG intensity of both types of samples. Specifically, for the ion-implanted phosphorus-doped Si(111) samples, we used the traditional Fourier analysis method as the basis for the SBHM simulation, analyzing various parameters(a_1 、a_2 、a_3 、a_4 、a_b 、a_sd) under different annealing conditions for the in-situ doped Si(100) samples.
The data fitting results, based on a theoretical model that considers the nonlinear polarization intensity and its corresponding electric field components, provided a detailed understanding of the influence mechanisms of phosphorus concentration and annealing time on the nonlinear optical response of the materials. These findings are crucial for comprehending how doping and thermal treatments regulate the optical properties of silicon materials. Additionally, they serve as an important reference for the design and optimization of silicon-based optoelectronic devices. The study highlights the effectiveness of the SBHM model in analyzing these complex interactions within the materials, thereby contributing to the development of advanced models for predicting and controlling material properties.
Moreover, the research demonstrates the critical role of SHG as a sensitive and non-destructive optical technique for probing the internal structures and properties of doped silicon. By comparing the SHG responses of the two types of samples, the study provides a clearer picture of how different doping techniques and annealing processes influence the nonlinear optical characteristics of silicon. For instance, the ion-implanted samples exhibited distinct SHG patterns compared to the in-situ doped samples, reflecting the differences in how phosphorus atoms integrate into the silicon lattice during the doping process. These differences are further influenced by the annealing conditions, which can cause changes in the crystal structure, defect density, and overall material quality.
The insights gained from this study not only advance the understanding of the relationship between doping, annealing, and nonlinear optical properties in silicon but also open up new avenues for the application of SHG in material science. The ability to accurately measure and analyze SHG responses under varying conditions allows researchers to fine-tune the doping and annealing processes to achieve desired optical properties, which is critical for the development of next-generation silicon-based photonic devices. Additionally, the study underscores the potential of combining traditional analysis methods with advanced models like SBHM to achieve a more comprehensive understanding of complex material behaviors.
Through this extensive research, we demonstrated the SHG characteristics of phosphorus-doped silicon samples under different annealing times and performed an in-depth analysis of their underlying mechanisms. These findings offer valuable insights for future material design and applications, particularly in the field of silicon-based optoelectronics. The study's approach and results provide a strong foundation for further exploration into the nonlinear optical properties of doped semiconductors, paving the way for more efficient and effective material engineering strategies in the industry.
【1】Hyo-Joong Kim, Jong-Heun Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors and Actuators B, 192, 607(2014).
【2】Zhaoliang Xing, Chong Zhang, Haozhe Cui, Yali Hai, Qingzhou Wu, and Daomin Min, Space Charge Accumulation and Decay in Dielectric Materials with Dual Discrete Traps, Applied Science, 9, 4253(2019).
【3】N. Shamir, J. G. Mihaychuk, and H. M. van Driel, Trapping and detrapping of electrons photoinjected from silicon to ultrathin SiO2 overlayers. I. In vacuum and in the presence of ambient oxygen, Journal of Applied Physics, 88, 896(2000).
【4】N. Shamir and H. M. van Driel, Trapping and detrapping of electrons photoinjected from silicon to ultrathin SiO2 overlayers. II. In He, Ar, H2, N2, CO, and N2O, Journal of Applied Physics, 88, 909(2000).
【5】 Bongim Jun, Ronald D. Schrimpf, Daniel M. Fleetwood, Yelena V. White, Robert Pasternak, Sergey N. Rashkeev, Francois Brunier, Nicolas Bresson, Marion Fouillat, Sorin Cristoloveanu, and Norman H. Tolk, Charge Trapping in Irradiated SOI Wafers Measured by Second Harmonic Generation, IEEE Transactions on Nuclear Science, 51, 3231(2004).
【6】V. Fomenko, E. P. Gusev, and E. Borguet, Optical second harmonic generation studies of ultrathin high-k dielectric stacks, Journal of Applied Physics, 97, 083711(2005).
【7】S.-D. Tzeng and S. Gwo, Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy, Journal of Applied Physics, 100, 023711(2006).
【8】T. Hurma, Effect of boron doping concentration on structural optical electrical properties of nanostructured ZnO films, Journal of Molecular Structure, 1189, 1(2019).
【9】D. Lim, M. C. Downer, and J. G. Ekerdt, Second-harmonic spectroscopy of bulk boron-doped Si(001), Applied Physics Letters, 77, 181(2000).
【10】J. G. Mihaychuk, N. Shamir, and H. M. van Driel, Multiphoton photoemission and electric-field-induced optical second-harmonic generation as probes of charge transfer across the Si/SiO2 interface, Physical Review B, 59, 2164(1999).
【11】P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Physical Review Letters, 7, 118(1961).
【12】Warren N. Herman, L. Michael Hayden, Maker fringes revisited: second-harmonic generation from birefringent or absorbing material, Journal of the Optical Society of America B, 12, 416(1995).
【13】G. Lüpke, Characterization of Semiconductor Interfaces by Second-Harmonic Generation, Surface Science Reports, 35, 75 (1999).
【14】N. Bloembergen, R. K. Chang, S. Jha, and C. H. Lee, Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry, Physical Review, 174, 813(1968).
【15】H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Second-Harmonic Reflection from Silicon Surfaces and Its Relation to Structural Symmetry, Physical Review Letters, 51, 1983(1983).
【16】J. E. Sipe, D. J. Moss, and H. M. vanDriel, Phenomenological Theory of Optical Second- and Third-Harmonic from Cubic Centrosymmetric Crystals, Physical Review B, 35, 1129(1987).
【17】Carsten Schinke, P. Christian Peest, Jan Schmidt, Rolf Brendel, Karsten Bothe, Malte R. Vogt, Ingo Kröger, Stefan Winter, Alfred Schirmacher, Siew Lim, Hieu T. Nguyen, and Daniel MacDonald, Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon, AIP Advances, 5, 067168(2015).
【18】U. S. Vogl, S. F. Lux, P. Das, A. Weber, T. Placke, R. Kostecki, and M. Winter, The Mechanism of SEI Formation on Single Crystal Si(100),Si(110) and Si(111) Electrode, Journal of The Electrochemical Society, 162, A2281(2015).
【19】Xinhui Zhang, Zhenghao Chen, Linzhen Xuan, Shaohua Pan, and Guozhen Yang, Enhancement of bulklike second-order nonlinear susceptibility in SiGe/Si step wells and biasing-field controlled (Si5Ge5)100 superlattices, Physical Review B, 56, 15842(1997).
【20】D. J. Bottomley, G.Lüpke, J. G. Mihaychuk, and H. M. van Driel, Determination of the crystallographic orientation of cubic media to high resolution using optical harmonic generation, Journal of Applied Physics, 74, 6072(1993).
【21】J. I. Dadap, P. T. Wilson, M. H. Anderson, and M. C. Downer, Femtosecond carrier-induced screening of dc electric-field-induced second-harmonic generation at the Si(001)-SiO2 interface, Optics Letters, 22, 901(1997).
【22】J. Bloch, J. G. Mihaychuk, and H. M. van Driel, Electron Photoinjection from Silicon to Ultrathin SiO2 Films via Ambient Oxygen, Physical Review Letters, 77, 920(1996).
【23】W. Daum, H.J. Krause, U. Reichel, and H. Ibach, Identification of Strained Silicon Layers at Si-SiO2 Interfaces and Clean Si Surfaces by Nonlinear Optical Spectroscopy, Physical Review Letters, 71, 1234(1993).
【24】Sipe, J. E., D. J. Moss, and H. M. Van Driel. "Phenomenological theory of optical secondandthird-harmonic generation from cubic centrosymmetric crystals." Physical Review B 35.3(1987).
【25】K. Pedersen, P. Morgen, Dispersion of optical second-harmonic generation from Si(111)7×7, Physical Review B, 52, 2277(1995)
【26】C. Meyer, G. Lüpke, U. Emmerichs, F. Wolter, and H. Kurz, Electronic Transitions at Si(111)/SiO2 and Si(111)/Si3N4 Interfaces Studied by Optical Second-Harmonic Spectroscopy, Physical Review Letters, 74 , 3001(1995).
【27】Peter Bratu and Ulrich Höfer, Phonon-Assisted Sticking of Molecular Hydrogen on Si(111)-(7×7), Physical Review Letters, 74, 1625(1995)
【28】J. I. Dadap, Z. Xu, X. F. Hu, and M. C. Downer, Second-harmonic spectroscopy of a Si(001) surface during calibrated variations in temperature and hydrogen coverage, Physical Review B, 56, 13367(1997).
【29】J. Qi, M. S. Yeganeh, I. Koltover, and A. G. Yodh, Depletion-Electric-Field-Induced Changes in Second-Harmonic Generation from GaAs, Physical Review Letters, 71, 633(1993).
【30】Ming Lei, Jacqueline Zou, Justin Lee, John Changala, and Brian Larzel, Detection of Thermal Donors from Electrically Active Oxygen Interstitials by Optical Second Harmonic Generation, ASMC, 197-201(2018).
【31】O. A. Aktsipetrov, A. A. Fedyanin, A. V. Melnikov, E. D. Mishina, A. N. Rubtsov, M. H. Anderson, P. T. Wilson, M. ter Beek, X. F. Hu, J. I. Dadap, and M. C. Downer, dc-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)- SiO2 interfaces, Physical Review B, 60, 8924(1999).
【32】H. Park, J. Qi, Y. Xu, K. Varga, S. M. Weiss, B. R. Rogers, G. Lüpke, and N. Tolk, Characterization of boron charge traps at the interface of Si/SiO2 using second harmonic generation, Applied Physics Letters, 95, 062102(2009).
【33】Heungman Park, JingboQi,YingXu, Gunter Lüpke, and Norman Tolk, Polarization-dependent temporal behavior of second harmonic generation in Si/SiO2 systems, Journal of Optics, 13, 055202(2011).
【34】J. G. Mihaychuk, J. Bloch, Y. Liu, and H. M. van Driel, Time-dependent second-harmonic generation from the Si-SiO2 interface induced by charge transfer, Optics Letters, 20, 2063(1995).
【35】S. Mizushima, Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement, Metrologia, 41, 137 (2004).
【36】Ashok B. Gadkari, Tukaram J. Shinde, and Pramod Nivrutti Vasambekar, Ferrite Gas Sensor, IEEE Sensors Journal, 11, 849(2011).
【37】N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to? , Sensors and Actuators B, 121, 18(2007).
【38】Nare Tsokela, Simulating the processes in the depletion region of a schottky diode, Third year physics project (PHY 353), University of Pretoria,(2014)
【39】Supab Choopun, Niyom Hongsith, and Ekasiddh Wongrat, Nanowires - Recent Advances, Metal-Oxide Nanowires for Gas Sensors (2012)
【40】Hans Swenson and Nicholas P. Stadie, Langmuir’s Theory of Adsorption: A Centennial Review, Langmuir (2019).
【41】G. Barbero, L.R. Evangelista, I. Lelidis, Effective adsorption energy and generalization of the Frumkin-Fowler-Guggenheim isotherm, Journal of Molecular Liquids, 327, 114795 (2021).
【42】Monique A. van der Veen, Ventsislav K. Valev, Thierry Verbiest, and Dirk E. De Vos, In Situ Orientation-Sensitive Observation of Molecular Adsorption on a Liquid/Zeolite Interface by Second-Harmonic Generation, Langmuir Letter, 25, 4256(2009).
【43】Li Le, Liu Yanghua, Yu Gongda, Wang Wencheng, and Zhang Zhiming, Optical second-harmonic generation study of oxygen adsorption on a polycrystalline Ag surface, Physical Review B, 40, 10100(1989).
【44】Robert M. Corn and Daniel A. Higgins, Optical Second Harmonic Generation as a Probe of Surface Chemistry, Chemical Reviews, 94, 107(1994).
【45】Julie L. Fiore, Vasiliy V. Fomenko, Dora Bodlaki, and Eric Borguet, Second harmonic generation probing of dopant type and density at the Si/SiO2 interface, Applied Physics Letters, 98, 041905(2011).
【46】N. Shamir, J. G. Mihaychuk, and H. M. van Driel, Universal Mechanism for Gas Adsorption and Electron Trapping on Oxidized Silicon, Physical Review Letters, 82, 359(1999).
【47】J. Fang, W. W. Heidbrink, and G. P. Li, Nonlinear optical diagnosis of oxide traps formed during reactive ion etching, Journal of Applied Physics, 88, 2641(2000).
【48】F. Flores, J. Sánchez-Dehesa et F. Guinea, Metal-Semiconductor Junctions, J. Phys. Colloques, 45, C5-401-C5-407(1984).
【49】Benjamin Lipovšek, Franc Smole, Marko Topič, Iztok Humar, and Anton Rafael Sinigoj, Driving forces and charge-carrier separation in p-n junction solar cells, AIP Advances, 9, 055026(2019).
【50】Constantine T. Dervos, Panayotis D. Skafidas, John A. Mergos and Panayota Vassiliou, p-n Junction Photocurrent Modelling Evaluation under Optical and Electrical Excitation, Sensors, 5, 58-70(2004).
【51】J. Adey, R. Jones, D. W. Palme, P. R. Briddon, and S. Öberg, Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells, Physical Review Letters, 93, 055504(2004).
【52】Young Jun Oh, Hyeon-Kyun Noh, K.J. Chang, First-principles study of the segregation of boron dopants near the interface between crystalline Si and amorphous SiO2, Physica B, 407, 2989(2012).
【53】Young Jun Oh, Jin-Heui Hwang, Hyeon-Kyun Noh, Junhyeok Bang, Byungki Ryu, K.J. Chang, Ab initio study of boron segregation and deactivation at Si/SiO2 interface, Microelectronic Engineering, 89, 120(2012).
【54】Geun-Myeong Kim, Young Jun Oh, and K. J. Chang, Effects of interface bonding and defects on boron diffusion at Si/SiO2 interface, Journal of Applied Physics, 114, 223705(2013).
【55】Chastain, J., & King Jr, R. C. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, USA, 261 (1992).
【56】L. Gallmann, I. Jordan, H. J. Wörner, L. Castiglioni, M. Hengsberger, J. Osterwalder, C. A. Arrell, M. Chergui, E. Liberatore, U. Rothlisberger, and U. Keller, Photoemission and photoionization time delays and rates, Structural Dynamics, 4, 061502(2017).