| 研究生: |
陳畇安 Chen, Yun-An |
|---|---|
| 論文名稱: |
應用生物優植法探討不同類型之石油碳氫化合物污染土壤的微生物族群消長與生物降解能力之影響 Impacts of Bioaugmentation, Microbial Community Succession, and Biodegradability on Bioremediation of Soils Contaminated with Various Total Petroleum Hydrocarbons |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 碳氫化合物 、土壤耕作法 、生物復育 、生物優植法 、生物刺激 、總石油碳氫化合物-柴油/燃料油 、生質柴油 、土壤有機質 、柴油 、燃料油 、碳氫化合物成分分析 、末端修飾限制片段長度多型性分析 、內轉錄間隔區微陣列分析 |
| 外文關鍵詞: | Hydrocarbon, landfarming, bioremediation, bioaugmentation, biostimulation, total petroleum hydrocarbon-diesel/fuel oil (TPHd/TPHf), biodiesel, soil organic matter (SOM), diesel, fuel oil, hydrocarbon fractional analysis, terminal restriction fragment length polymorp |
| 相關次數: | 點閱:212 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在第3章的研究中,應用改進式的系統化生物處理方法來整治受石油碳氫化物污染之土方,此全面性的系統化生物復育技術,將生物優植和生物刺激結合分子生物的微陣列生物晶片技術,以達到同步進行土壤監測與整治復育的過程。本研究藉由土壤翻堆的操作和再植種生物製劑(廚餘堆肥)的策略,以提高生物復育效率,達到土壤中的總石油碳氫化合物之降解。本研究包含受燃料油(Fuel oil)及柴油(Diesel)污染,兩種不同的土方來源,其一為KH-92來自一受石油碳氫化合物長期污染的高黏質土壤(Clay loam);其二為KH-20來自另一受石油碳氫化合物近期污染的高砂質土壤(Sandy loam)。經過50天的第二階段生物復育後,兩個不同土方試驗中的N系列(Non-turning over machine,未經連續翻堆,僅以小山貓機(bulldozer)進行土方推進操作)和T系列(Turning over machine,以耕耘機(Rotavator)進行連續翻堆操作)之生物土堆,其TPHC10-C40的污染降解率分別約65%和76%,證明T系列土堆具有較好的翻堆降解成果。最後,經過198天的兩階段生物復育後,總土方KH-92與KH-20,其TPHC10-C40的污染降解率皆能達到約90% (起始濃度5,718 mg/kg-dry soil)。當在生物復育的第二階段,進行生物優植和生物刺激時,微生物濃度從約105增加到106.5 CFU/g-dry soil,同時TPHC10-C40降解率亦與微生物成長,呈現相同的增加趨勢。藉由微陣列生物晶片對受污染土壤中的微生物進行分析後,其多樣性的表現為:土壤原生菌中的主要族群是Gordonia alkanivorans,Gordonia desulfuricans,Aspergillus fumigates,Aspergillus flavus,Pseudomonas boydii及Candida tropicalis。在生物復育的過程中,兩個不同的生物反應土堆試驗中,額外進行再植種的生物優植試驗組,其呈現的微生物為Acinetobacter sp.,Pseudomonas aeruginosa及Aspergillus niger,皆為已知對於石油碳氫化合物具有高度降解能力之菌群。實場的生物整治結果呈現,經生物優植試驗的生物土堆,其殘留的TPHC10-C40濃度已降低到小於500 mg/kg-dry soil。
在第4章中,主要目的為研究土壤有機質(SOM)含量程度對總石油碳氫化物之生物降解的影響。此研究的批次試驗是用2%或10%的土壤有機質分別添加到不同的柴油或燃料油污染土壤批次中。本研究除了針對TPH C10-C40 (柴油或燃料油)降解效率進行探討外,亦結合寡核苷酸微陣列晶片技術(Microarray)和末端修飾限制片段長度多型性分析(T-RFLP)等分子生物技術,對具有降解石油碳氫化物能力的微生物群落,進行詳細的分析。此研究的整個試驗過程中,四個批次的試驗中,經過了140天的反應期間,碳氫化物的濃度TPH C10-C40從10,000減至1,849-4,352 mg/kg-dry soil。在較高的SOM含量的批次試驗中,能夠觀察到較高的生物降解效率和反應動力常數。本研究亦進行碳氫化合物的三種成分分析,在批次試驗的柴油組(B1與B3),於試驗反應的後期,檢測到相對較低的Resin和Aromatic等片段。10%SOM的試驗中(B3與B4),其細菌和真菌的生長量比起2%SOM的試驗(B1與B2)高出約10 CFU / g至102 CFU / g之程度。並且在批次試驗中,其TPH降解率達到最低時,該批次試驗的真菌量亦為最低。利用ITS微陣列技術檢測出優植入的土壤微生物並證明其存活。藉由分生技術所呈現的微生物之生長趨勢證明,隨著反應時間的進行,不同種類的污染油品(柴油與燃料油)會影響微生物族群的多樣性。在不同的批次試驗中,微陣列晶片和T-RFLP的分析結果,皆顯示Gordonia alkanivorans,Gordonia desulfuricans和Rhodococcus erythoropolis是所有試驗中的優勢細菌;另外,在真菌族群中,Fusarium oxysporum與Aspergillus versicolor則是所有試驗中的優勢微生物。利用T-RFLP的數據進行非度量多維度分析(NMS)的統計結果說明,微生物族群的動態會受到不同階段的TPH降解趨勢所影響。
在第5章中,研究目的為比較各種不同比例的柴油與生質柴油混合的化合物所模擬的土壤污染試驗,以及利用生物復育技術,將7種證實具有柴油降解能力的細菌進行生物優植至模擬的污染土壤中。本研究提出的復育方法證實,對於土壤污染的試驗,達到80%-99%的污染物降解。對照組試驗(CT)中,其TPHd降解效率(%)和動力參數(k)的結果顯示,比生物優植試驗(BA)相似或更高。與BA相比,含20%和50%生質柴油的批次試驗(CT-20與CT-50),結果顯示,CT試驗中的TPHd降解率高於BA試驗的10%。因此,說明TPHd的降解率藉由生質柴油含量的增加而提高。例如,本研究證明,在100%生質柴油污染的土壤中(CT-B100 and BA-B100),TPHd的降解率達到了99%。在不同程度的試驗中皆顯示,生質柴油的增加亦會使總異營菌總量,從107提高到109 CFU / g-dry soil。分生檢測的結果顯示,Gordonia alkanovorans 與Gordonia desulfuricans為原生族群中的優勢菌。Pseudomonas aeruginosa則為整個復育過程中,能夠耐受環境並優勢存活的微生物。在研究的初期中,細菌生長的趨勢顯示,其微生物剛植入的階段才有效果。在進行土壤復育之前,如果能利用合適的分生技術,來鑑別出土壤中具有降解能力的微生物,將更有助於降低整治的成本,並決定最佳的復育策略。
An improved systematic bioremediation method combine bioaugmentation, biostimulation and a biomonitoring with biomolecular microarray chip, which was developed as an integrated bioremediation technology. It was applied to treat total petroleum hydrocarbon (TPH) in soil by using the landfarming operation with a reseeding strategy to enhance the bioremediation efficiency. After 50 days of the 2nd phase bioremediation process, N- and T-series fuel oils (TPHC10–C40) were degraded up to about 65% and 76%, respectively. Finally, the overall period (198 days), KH92 and KH-20 biopiles exhibit approximately 90% TPHC10–C40 removal. When bioaugmentation and biostimulation were applied in the second phase of bioremediation, the microbial concentration increased from approximately 105 to 106.5 CFU/g dry soil along with an increase in TPH biodegradation. Analysis of the microbial diversity in the contaminated soils by microarray biochips revealed that Gordonia alkanivorans, Gordonia desulfuricans, Aspergillus fumigates, Aspergillus flavus, Pseudomonas boydii and Candida tropicalis were the predominant groups in indigenous consortia; the groups in the augmented consortia were Acinetobacter sp., Pseudomonas aeruginosa and Aspergillus niger in both series of biopiles during bioremediation. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500mg TPH/kg dry soil.
In chapter 4, The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1,849-4,352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, Gordonia desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
In chapter 5, the objective is to investigate various percentages of diesel-biodiesel mixtures caused contamination and remediation approaches, including bioaugmentation with seven proved diesel-degrading bacterial species. Degradation of 80%-99% was achieved with the proposed remediation approach. The TPHd degradation efficiency (%) and rates (k) in the control batch (CT) found either similar or superior to the bioaugmentation batch (BA). The batches with 20% and 50% biodiesel achieved 10%improvement of TPHd degradation in CT over BA. The TPHd degradation was enhanced by the increase of biodiesel. For example, degradations of 99% were achieved in the soil polluted with 100% biodiesel. The increase of the biodiesel enlarged the total heterotrophic bacterial counts from 107to 109CFU/g dry soil. The molecular data concluded Gordonia alkanovorans and Gordonia desulfuricans were most dominant in the indigenous community. Pseudomonas aeruginosa was a strong survivor last for the entire remediation. The growth patterns of bacteria indicated the introduced species were useful only in the beginning. Using the recommended molecular tools to identify the useful bacteria prior to a remediation project would be helpful in reducing the cost and determine a wise remediation strategy.
Abbasian F;Lockington R;Mallavarapu M, Naidu R (2015): A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl Biochem Biotechnol 176, 670-99
Adamczyk S;Kiikkila O;Kitunen V, Smolander A (2013): Potential response of soil processes to diterpenes, triterpenes and tannins: Nitrification, growth of microorganisms and precipitation of proteins. Appl Soil Ecol 67, 47-52
Ahmed AA;Thiele-Bruhn S;Aziz SG;Hilal RH;Elroby SA;Al-Youbi AO;Leinweber P, Kuhn O (2015): Interaction of polar and nonpolar organic pollutants with soil organic matter: Sorption experiments and molecular dynamics simulation. Sci Total Environ 508, 276-287
Alarcon A;Davies FT;Autenrieth RL, Zuberer DA (2008): Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Int J Phytoremediat 10, 251-263
Alexander M (2000): Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34, 4259-4265
Antizar-Ladislao B;Lopez-Real J, Beck AJ (2005): In-vessel composting-bioremediation of aged coal tar soil: effect of temperature and soil/green waste amendment ratio. Environ Int 31, 173-178
Antizar-Ladislao B;Beck AJ;Spanova K;Lopez-Real J, Russell NJ (2007): The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 144, 340-347
Arenskotter M;Broker D, Steinbuchel A (2004): Biology of the metabolically diverse genus Gordonia. Appl Environ Microb 70, 3195-3204
Balba MT;Al-Awadhi N, Al-Daher R (1998): Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Meth 32, 155-164
Bandopadhyay S;Martin-Closas L;Pelacho AM, DeBruyn JM (2018): Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Front Microbiol 9
Bento FM;Camargo FAO;Okeke BC, Frankenberger WT (2005): Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technol 96, 1049-1055
Bezalel L;Hadar Y;Fu PP;Freeman JP, Cerniglia CE (1996): Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microb 62, 2547-2553
Biache C;Faure P;Mansuy-Huault L;Cebron A;Beguiristain T, Leyval C (2013): Biodegradation of the organic matter in a coking plant soil and its main constituents. Org Geochem 56, 10-18
Bossert I;Kachel WM, Bartha R (1984): Fate of Hydrocarbons during Oily Sludge Disposal in Soil. Appl Environ Microb 47, 763-767
Bremner JM (1996): Nitrogen Total. In: Sparks DL (Editor), Nitrogen Total. Methods of Soil Analysis Part 3: Chemical Methods. American Society of Agronomy-Soil Science Society of America, Madison, Wisconsin, pp. 1085-1122
Bucker F;Santestevan NA;Roesch LF;Jacques RJS;Peralba MDR;Camargo FAD, Bento FM (2011): Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int Biodeter Biodegr 65, 172-178
Bucker F;Barbosa CS;Quadros PD;Bueno MK;Fiori P;te Huang C;Frazzon APG;Ferrao MF;Camargo FAD, Bento FM (2014): Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. Int Biodeter Biodegr 95, 346-355
Bumpus JA, Aust SD (1985): Biodegradation of Environmental-Pollutants by a White Rot Fungus. Biochemistry-Us 24, 3388-3388
Bumpus JA (1989): Biodegradation of Polycyclic Aromatic-Hydrocarbons by Phanerochaete-Chrysosporium. Appl Environ Microb 55, 154-158
Cerniglia CE;White GL, Heflich RH (1985): Fungal Metabolism and Detoxification of Polycyclic Aromatic-Hydrocarbons. Arch Microbiol 143, 105-110
Chaineau CH;Morel J;Dupont J;Bury E, Oudot J (1999): Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227, 237-247
Chaineau CH;Rougeux G;Yepremian C, Oudot J (2005): Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37, 1490-1497
Chen BL, Ding J (2012): Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J Hazard Mater 229, 159-169
Chen CH;Whang LM;Pan CL;Yang CL, Liu PWG (2017): Immobilization of of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater. Int Biodeter Biodegr 124, 62-72
Chen CH;Liu PWG, Whang LM (2019a): Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments. Chemosphere 233, 843-851
Chen YA;Liu PWG;Whang LM;Wu YJ, Cheng SS (2019b): Biodegradability and microbial community investigation for soil contaminated with diesel blending with biodiesel. Process Saf Environ 130, 115-125
Chen YA, Liu, P. W. G., Whang, L. M., Wu Y. J., & Cheng S. S. (2019): Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil. Journal of Bioscience & Bioengineering
Chiou CT;Porter PE, Shoup TD (1984): Partition Equilibria of Nonionic Organic-Compounds between Soil Organic-Matter and Water. Environ Sci Technol 18, 295-297
Chiou CT;Shoup TD, Porter PE (1985): Mechanistic Roles of Soil Humus and Minerals in the Sorption of Nonionic Organic-Compounds from Aqueous and Organic Solutions. Org Geochem 8, 9-14
Chung CC (2018): Technological innovation systems in multi-level governance frameworks: The case of Taiwan's biodiesel innovation system (1997-2016). J Clean Prod 184, 130-142
Chung NH, Alexander M (1998): Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol 32, 855-860
Colla TS;Andreazza R;Bucker F;de Souza MM;Tramontini L;Prado GR;Frazzon AP;Camargo FA, Bento FM (2014): Bioremediation assessment of diesel-biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environmental science and pollution research international 21, 2592-602
Collins PJ;Kotterman MJJ;Field JA, Dobson ADW (1996): Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microb 62, 4563-4567
Colwell RR, Walker JD (1977): Ecological Aspects of Microbial-Degradation of Petroleum in Marine-Environment. Crc Cr Rev Microbiol 5, 423-445
Cyplik P;Schmidt M;Szulc A;Marecik R;Lisiecki P;Heipieper HJ;Owsianiak M;Vainshtein M, Chrzanowski L (2011): Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Bioresource Technol 102, 4347-4352
de Souza MM;Colla TS;Bucker F;Ferrao MF;Huang CT;Andreazza R;Camargo FAD, Bento FM (2016): Biodegradation potential of Serratiamarcescens for diesel/biodiesel blends. Int Biodeter Biodegr 110, 141-146
Dejong E;Field JA, Debont JAM (1992a): Evidence for a New Extracellular Peroxidase - Manganese-Inhibited Peroxidase from the White-Rot Fungus Bjerkandera Sp Bos-55. Febs Lett 299, 107-110
Dejong E;Field JA;Dings JAFM;Wijnberg JBPA, Debont JAM (1992b): Denovo Biosynthesis of Chlorinated Aromatics by the White-Rot Fungus Bjerkandera Sp Bos55 - Formation of 3-Chloro-Anisaldehyde from Glucose. Febs Lett 305, 220-224
DeMello JA;Carmichael CA;Peacock EE;Nelson RK;Arey JS, Reddy CM (2007): Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study. Mar Pollut Bull 54, 894-904
Deshmukh R;Khardenavis AA, Purohit HJ (2016): Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol 56, 247-264
Dong HY;Kong CH;Wang P, Huang QL (2014): Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem. Soil Biol Biochem 69, 275-281
Dudasova H;Lukacova L;Murinova S, Dercova K (2012): Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). Int Biodeter Biodegr 69, 23-27
Dudasova H;Lukacova L;Murinova S;Puskarova A;Pangallo D, Dercova K (2014): Bacterial strains isolated from PCB- contaminated sediments and their use for bioaugmentation strategy in microcosms. J Basic Microb 54, 253-260
Ehlers LJ, Luthy RG (2003): Contaminant bioavailability in soil and sediment. Environ Sci Technol 37, 295a-302a
Environmental Analysis Laboratory (2003): Soil Quality Extraction of Trace Metals soluble in Aqua Regia (in chinese). NIEA S321.63B. Environmental Protection Agency, Executive Yuan, R.O.C.
Environmental Protection Agency (1996): Ultrasonic extraction, Test methods for evaluating solid waste physical/chemical methods. Method 3550 B. 2nd Revision. United States Environmental Protection Agency, U.S.A.
Fester T;Giebler J;Wick LY;Schlosser D, Kastner M (2014): Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotech 27, 168-175
Field JA;Dejong E;Costa GF, Debont JAM (1992): Biodegradation of Polycyclic Aromatic-Hydrocarbons by New Isolates of White Rot Fungi. Appl Environ Microb 58, 2219-2226
Fosso-Kankeu E;Marx S, Brink A (2017): Adaptation Behaviour of Bacterial Species and Impact on the Biodegradation of Biodiesel-Diesel. Braz J Chem Eng 34, 469-480
Gallego JLR;Loredo J;Llamas JF;Vazquez F, Sanchez J (2001): Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12, 325-335
Gardner WH (1986): Water content ,in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 503-507
Ghazali FM;Rahman RNZA;Salleh AB, Basri M (2004): Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeter Biodegr 54, 61-67
Gorna H;Lawniczak L;Zgola-Grzeskowiak A, Kaczorek E (2011): Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresource Technol 102, 3028-3033
Gustafson JB (1997): Using TPH in risk-based corrective action. In: Tanks OoUS (Hrsg.). Shell Development Corporation, Internet by U.S. Environmental Protection Agency
Gustafson JB;Tell JG, Orem D (1997): Selection of Representative TPH Fractions Based on Fate and Transport Considerations, Total Petroleum Hydrocarbon Criteria Working Group Series. Amherst Scientific Publishers
Hatzinger PB, Alexander M (1995): Effect of Aging of Chemicals in Soil on Their Biodegradability and Extractability. Environ Sci Technol 29, 537-545
Hilpert M, Breysse PN (2014): Infiltration and evaporation of small hydrocarbon spills at gas stations. J Contam Hydrol 170, 39-52
Howard PJA, Howard DM (1990): Use of Organic-Carbon and Loss-on-Ignition to Estimate Soil Organic-Matter in Different Soil Types and Horizons. Biol Fert Soils 9, 306-310
Hsiao CR;Huang LY;Bouchara JP;Barton R;Li HC, Chang TC (2005): Identification of medically important molds by an oligonucleotide array. J Clin Microbiol 43, 3760-3768
Juhasz AL, Naidu R (2000): Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegr 45, 57-88
Jung H;Sohn KD;Neppolian B, Choi H (2008): Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation. J Hazard Mater 150, 809-17
Kanaly RA, Harayama S (2000): Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182, 2059-2067
Kanaly RA, Harayama S (2010): Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3, 136-164
Kang JW;Kim JB, Koga M (1997): Determination of assimilable organic carbon (AOC) in ozonated water with Acinetobacter calcoaceticus. Ozone-Sci Eng 18, 521-534
Kang YS;Park YJ;Jung J, Park W (2009): Inhibitory Effect of Aged Petroleum Hydrocarbons on the Survival of Inoculated Microorganism in a Crude-Oil-Contaminated Site. J Microbiol Biotechn 19, 1672-1678
Kasel S;Bennett LT, Tibbits J (2008): Land use influences soil fungal community composition across central Victoria, south-eastern Australia. Soil Biol Biochem 40, 1724-1732
Kastner M, Mahro B (1996): Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biot 44, 668-675
Kickham P;Otton SV;Moore MM;Ikonomou MG, Gobas FAPC (2012): Relationship between biodegradation and sorption of phthalate esters and their metabolites in natural sediments. Environ Toxicol Chem 31, 1730-1737
Kim YH;Moody JD;Freeman JP;Brezna B;Engesser KH, Cerniglia CE (2004): Evidence for the existence of PAH-quinone reductase and catechol-O-methyltransferase in Mycobacterium vanhaalenii PYR-1. J Ind Microbiol Biot 31, 507-516
Kim YS;Goodell B, Jellison J (1993): Immunogold Labeling of Extracellular Metabolites from the White-Rot Fungus Trametes-Versicolor. Holzforschung 47, 25-28
Kwapisz E;Wszelaka J;Marchut O, Bielecki S (2008): The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7. Int Biodeter Biodegr 61, 214-222
Lambert M;Kremer S;Sterner O, Anke H (1994): Metabolism of Pyrene by the Basidiomycete Crinipellis-Stipitaria and Identification of Pyrenequinones and Their Hydroxylated Precursors in Strain Jk375. Appl Environ Microb 60, 3597-3601
Langenheim JH (1994): Higher-Plant Terpenoids - a Phytocentric Overview of Their Ecological Roles. J Chem Ecol 20, 1223-1280
Laorrattanasak S;Rongsayamanont W;Khondee N;Paorach N;Soonglerdsongpha S;Pinyakong O, Luepromchai E (2016): Production and Application of Gordonia westfalica GY40 Biosurfactant for Remediation of Fuel Oil Spill. Water Air Soil Poll 227, 325
Leahy JG, Colwell RR (1990): Microbial-Degradation of Hydrocarbons in the Environment. Microbiol Rev 54, 305-315
Lee M;Kim MK;Kwon MJ;Park BD;Kim MH;Goodfellow M, Lee ST (2005): Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J Biosci Bioeng 100, 429-436
Lee T;Nam IH;Kim JH;Zhang M;Jeong TY;Baek K, Kwon EE (2018): The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery. J Co2 Util 28, 367-373
Lin CL;Shen FT;Tan CC;Huang CC;Chen BY;Arun AB, Young CC (2012): Characterization of Gordonia sp strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol Res 167, 395-404
Lin TC;Young CC;Ho MJ;Yeh MS;Chou CL;Wei YH, Chang JS (2005): Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. J Biosci Bioeng 99, 466-472
Lin TC;Chang JS, Young CC (2008): Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnol Lett 30, 1201-1206
Lin TC;Pan PT, Cheng SS (2010): Ex situ bioremediation of oil-contaminated soil. J Hazard Mater 176, 27-34
Lin TC;Pan PT;Young CC;Chang JS;Chang TC, Cheng SS (2011): Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ Sci Pollut R 18, 1487-1496
Lingesan S;Annamalai K;Parthasarathy M;Ramalingam KM;Dhinesh B, Lalvani JIJ (2018): Production of Garcinia gummi-gutta Methyl Ester (GGME) as a Potential Alternative Feedstock for Existing Unmodified DI Diesel Engine: Combustion, Performance, and Emission Characteristics. J Test Eval 46, 2661-2678
Liu PWG;Whang LM;Yang MC, Cheng SS (2008): Biodegradation of diesel-contaminated soil: A soil column study. J Chin Inst Chem Eng 39, 419-428
Liu PWG;Whang LM;Chang TC;Tseng IC;Pan PT, Cheng SS (2009): Verification of necessity for bioaugmentation - lessons from two batch case studies for bioremediation of diesel-contaminated soils. J Chem Technol Biot 84, 808-819
Liu PWG;Chang TC;Whang LM;Kao CH;Pan PT, Cheng SS (2011): Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. Int Biodeter Biodegr 65, 1119-1127
Liu PWG;Wang SY;Huang SG, Wang MZ (2012): Effects of soil organic matter and ageing on remediation of diesel-contaminated soil. Environ Technol 33, 2661-2672
Liu PWG;Chang TC;Chen CH;Wang MZ, Hsu HW (2013): Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil. Int Biodeter Biodegr 85, 661-670
Liu PWG;Chang TC;Chen CH;Wang MZ, Hsu HW (2014): Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils. Int Biodeter Biodegr 95, 276-284
Llado S;Solanas AM;de Lapuente J;Borras M, Vinas M (2012a): A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435-436, 262-9
Llado S;Solanas AM;de Lapuente J;Borras M, Vinas M (2012b): A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435, 262-269
Loser C;Seidel H;Hoffmann P, Zehnsdorf A (1999): Bioavailability of hydrocarbons during microbial remediation of a sandy soil. Appl Microbiol Biot 51, 105-111
Luthy RG;Aiken GR;Brusseau ML;Cunningham SD;Gschwend PM;Pignatello JJ;Reinhard M;Traina SJ;Weber WJ, Westall JC (1997): Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31, 3341-3347
Machnikowska H;Pawelec K, Podgorska A (2002): Microbial degradation of low rank coals. Fuel Process Technol 77, 17-23
Mancera-Lopez M;Esparza-Garcia F;Chavez-Gomez B;Rodriguez-Vazquez R;Saucedo-Castaneda G, Barrera-Cortes J (2008): Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeter Biodegr 61, 151-160
Mancera-Lopez ME;Rodriguez-Casasola MT;Rios-Leal E;Esparza-Garcia F;Chavez-Gomez B;Rodriguez-Vazquez R, Barrera-Cortes J (2007): Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation. Acta Chim Slov 54, 201-209
Marchand C;St-Arnaud M;Hogland W;Bell TH, Hijri M (2017): Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeter Biodegr 116, 48-57
Marco-Urrea E;Garcia-Romera I, Aranda E (2015): Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32, 620-628
Margesin R;Zimmerbauer A, Schinner F (2000): Monitoring of bioremediation by soil biological activities. Chemosphere 40, 339-346
Megharaj M;Ramakrishnan B;Venkateswarlu K;Sethunathan N, Naidu R (2011): Bioremediation approaches for organic pollutants: A critical perspective. Environ Int 37, 1362-1375
Meyer DD;Beker SA;Buecker F;Peralba MDR;Frazzon APG;Osti JF;Andreazza R;Camargo FAD, Bento FM (2014): Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int Biodeter Biodegr 95, 356-363
Monsalvo VM;Tobajas M;Mohedano AF, Rodriguez JJ (2012): Intensification of sequencing batch reactors by cometabolism and bioaugmentation with Pseudomonas putida for the biodegradation of 4-chlorophenol. J Chem Technol Biot 87, 1270-1275
Mrozik A, Piotrowska-Seget Z (2010): Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165, 363-75
Nam K;Chung N, Alexander M (1998): Relationship between organic matter content of soil and the sequestration of phenanthrene. Environ Sci Technol 32, 3785-3788
NOAA (1998): FUNDAMENTAL PRINCIPLES OF BIOREMEDIATION (An Aid to the Development of Bioremediation Proposals).
Ortega-Calvo JJ;Tejeda-Agredano MC;Jimenez-Sanchez C;Congiu E;Sungthong R;Niqui-Arroyo JL, Cantos M (2013): Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J Hazard Mater 261, 733-745
Ortega-Calvo JJ;Posada-Baquero R;Vila J;Garcia JL, Cantos M (2018): From bioavailability science to soil remediation: Sustainable stimulation of biological networks for enhanced pollutant carbon turnover. Abstr Pap Am Chem S 255
Oudot C;Ternon JF, Lecomte J (1995): Measurements of Atmospheric and Oceanic Co2 in the Tropical Atlantic - 10 Years after the 1982-1984 Focal Cruises. Tellus B 47, 70-85
Oudot J;Merlin FX, Pinvidic P (1998): Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45, 113-125
Owsianiak M;Chrzanowski L;Szulc A;Staniewski J;Olszanowski A;Olejnik-Schmidt AK, Heipieper HJ (2009): Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100, 1497-500
Pasqualino JC;Montane D, Salvado J (2006): Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass Bioenerg 30, 874-879
Peck JE (2010): Nonmetric multidimensional scaling(NMS). Multivariate analysis for community ecologists: step-by-step using PC-ORD. MjM Software Design, Gleneden Beach, Oregon, USA., 84-92 pp
Pothuluri JV;Freeman JP;Evans FE, Cerniglia CE (1992): Fungal Metabolism of Acenaphthene by Cunninghamella-Elegans. Appl Environ Microb 58, 3654-3659
Providenti MA;Lee H, Trevors JT (1993): Selected Factors Limiting the Microbial-Degradation of Recalcitrant Compounds. J Ind Microbiol 12, 379-395
Ren XY;Zeng GM;Tang L;Wang JJ;Wan J;Liu YN;Yu JF;Yi H;Ye SJ, Deng R (2018): Sorption, transport and biodegradation - An insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610, 1154-1163
Reyes-Cesar A;Absalon AE;Fernandez FJ;Gonzalez JM, Cortes-Espinosa DV (2014): Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microb Biot 30, 999-1009
Richnow HH;Seifert R;Kastner M;Mahro B;Horsfield B;Tiedgen U;Bohm S, Michaelis W (1995): Rapid Screening of Pah-Residues in Bioremediated Soils. Chemosphere 31, 3991-3999
Riding MJ;Doick KJ;Martin FL;Jones KC, Semple KT (2013): Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. J Hazard Mater 261, 687-700
Ryckeboer J;Mergaert J;Coosemans J;Deprins K, Swings J (2003): Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of applied microbiology 94, 127-137
Sabate J;Vinas M, Solanas AM (2004): Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int Biodeter Biodegr 54, 19-25
Sack U;Heinze TM;Deck J;Cerniglia CE;Martens R;Zadrazil F, Fritsche W (1997): Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microb 63, 3919-3925
Saisriyoot M;Sahaya T;Thanapimmetha A;Chisti Y, Srinophakun P (2016): Production of potential fuel oils by Rhodococcus opacus grown on petroleum processing wastewaters. J Renew Sustain Ener 8, 063106
Sarkar D;Ferguson M;Datta R, Birnbaum S (2005): Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136, 187-195
Schiewer S, Horel A (2017): Biodiesel Addition Influences Biodegradation Rates of Fresh and Artificially Weathered Diesel Fuel in Alaskan Sand. J Cold Reg Eng 31
Schleicher T;Werkmeister R;Russ W, Meyer-Pittroff R (2009): Microbiological stability of biodiesel-diesel-mixtures. Bioresour Technol 100, 724-30
Semple KT;Reid BJ, Fermor TR (2001): Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112, 269-283
Semple KT;Morriss AWJ, Paton GI (2003): Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54, 809-818
Semple KT;Doick KJ;Wick LY, Harms H (2007): Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ Pollut 150, 166-176
Serrano A;Gallego M;Gonzalez JL, Tejada M (2008): Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil. Environ Pollut 151, 494-502
Sharma A;Kumar P, Rehman MB (2014): Biodegradation of Diesel Hydrocarbon in Soil by Bioaugmentation of Pseudomonas aeruginosa: A Laboratory Scale Study. International Journal of Environmental Bioremediation & Biodegradation 2, 202-212
Shintani M;Sugiyama K;Sakurai T;Yamada K, Kimbara K (2019): Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions. J Biosci Bioeng 127, 197-200
Shuttleworth KL, Cerniglia CE (1995): Environmental Aspects of Pah Biodegradation. Appl Biochem Biotech 54, 291-302
Silver WL;Neff J;McGroddy M;Veldkamp E;Keller M, Cosme R (2000): Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193-209
Steger K;Eklind Y;Olsson J, Sundh I (2005): Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels. Microbial Ecol 50, 163-171
Steger K;Jarvis A;Vasara T;Romantschuk M, Sundh I (2007): Effects of differing temperature management on development of Actinobacteria populations during composting. Res Microbiol 158, 617-624
Subramani L;Parthasarathy M;Balasubramanian D, Ramalingam K (2018): Novel Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine. Renew Energ 125, 568-577
Sugimori D, Utsue T (2012): A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp SS-192 bacteria isolated from Japanese soil. World J Microb Biot 28, 841-848
Suja F;Rahim F;Taha MR;Hambali N;Razali MR;Khalid A, Hamzah A (2014): Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory. and field observations. Int Biodeter Biodegr 90, 115-122
Taccari M;Milanovic V;Comitini F;Casucci C, Ciani M (2012): Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeter Biodegr 66, 39-46
Tachibana AHaS (2012): Biodegradation of Aliphatic Hydrocarbon in Three Types of Crude Oil by Fusarium sp. F092 under Stress with Artificial Sea Water. Journal of Environmental Science and Technology 5, 64-73
Tang JC;Zhu WY;Kookana R, Katayama A (2013): Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116, 653-659
Thomassin-Lacroix EJM;Eriksson M;Reimer KJ, Mohn WW (2002): Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biot 59, 551-556
Ti QQ;Gu CG;Liu C;Cai J;Bian YR;Yang XL;Song Y;Wang F;Sun C, Jiang X (2018): Comparative evaluation of influence of aging, soil properties and structural characteristics on bioaccessibility of polychlorinated biphenyls in soil. Chemosphere 210, 941-948
Tobiszewski M;Mechlinska A;Zygmunt B, Namiesnik J (2009): Green analytical chemistry in sample preparation for determination of trace organic pollutants. Trac-Trend Anal Chem 28, 943-951
Todd GD;Chessin RL, Colman J (1999): Toxicological Profile for Total Petroleum Hydrocarbons (TPH). In: Service PH (Hrsg.). Agency for toxic substances and disease registry, U.S. department of health and human services
Tung SK;Teng LJ;Vaneechoutte M;Chen HM, Chang TC (2006): Array-based identification of species of the genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus. J Clin Microbiol 44, 4414-4424
Tyagi M;da Fonseca MMR, de Carvalho CCCR (2011): Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231-241
USDA (2012): Field Book for Describing and Sampling Soils.
USEPA (1983): Hazardous Waste Land Treatment. SW-874
USEPA (2001): Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands.
USEPA (2003): Aerobic Biodegradation of Oily Wastes: A Field Guide For Federal On-scene Coordinators.
Uzura A;Katsuragi T, Tani Y (2001): Stereoselective oxidation of alkylbenzenes by fungi. J Biosci Bioeng 91, 217-221
Vallapudi DR;Makineni HK;Pisipaty SK, Venu H (2018): Combined impact of EGR and injection pressure in performance improvement and NOx control of a DI diesel engine powered with tamarind seed biodiesel blend. Environ Sci Pollut R 25, 36381-36393
Vasudevan N, Rajaram P (2001): Bioremediation of oil sludge-contaminated soil. Environ Int 26, 409-411
Venkatesan EP;Kandhasamy A;Subramani L;Sivalingam A, Kumar AS (2019): Experimental Investigation on Lemongrass Oil Water Emulsion in Low Heat Rejection Direct Ignition Diesel Engine. J Test Eval 47, 238-255
Venu H, Madhavan V (2016): Effect of Al2O3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: Performance, combustion and emission characteristics. Fuel 186, 176-189
Venu H;Subramani L, Raju VD (2019): Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives. Renew Energ 140, 245-263
Vidali M (2001): Bioremediation. An overview. Pure Appl Chem 73, 1163-1172
Vila J;Nieto JM;Mertens J;Springael D, Grifoll M (2010): Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. Fems Microbiol Ecol 73, 349-362
Vinas M;Grifoll M;Sabate J, Solanas AM (2002): Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J Ind Microbiol Biot 28, 252-260
von der Weid I;Marques JM;Cunha CD;Lippi RK;dos Santos SCC;Rosado AS;Lins U, Seldin L (2007): Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst Appl Microbiol 30, 331-339
Wang H;Liu DM;Lu L;Zhao ZW;Xu YP, Cui FY (2012a): Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal. Bioresource Technol 116, 80-85
Wang SZ;Nomura N;Nakajima T, Uchiyama H (2012b): Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J Biosci Bioeng 113, 624-630
Watanabe K (2001): Microorganisms relevant to bioremediation. Curr Opin Biotech 12, 237-241
Weissenfels WD;Beyer M, Klein J (1990): Degradation of Phenanthrene, Fluorene and Fluoranthene by Pure Bacterial Cultures. Appl Microbiol Biot 32, 479-484
Whang LM;Liu PWG;Ma CC, Cheng SS (2008): Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151, 155-163
Wieczorek D;Marchut-Mikołajczyk O, Antczak T (2015): Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil. BioTechnologia 4, 293-306
Wittich R-M (1998): Biodegradation of Dioxins and Furans. Biodegradation of Diaryl Ether Pesticides. Springer, Springer-Verlag Berlin Heidelberg New York, 249 pp
Wozniak-Karczewska M;Lisiecki P;Bialas W;Owsianiak M;Piotrowska-Cyplik A;Wolko L;Lawniczak L;Heipieper HJ;Gutierrez T, Chrzanowski L (2019): Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Sci Total Environ 671, 948-958
Wu HY;Jiang DH;Cai P;Rong XM;Dai K;Liang W, Huang QY (2012): Adsorption of Pseudomonas putida on soil particle size fractions: effects of solution chemistry and organic matter. Journal of Soils and Sediments 12, 143-149
Wu Y-HHaJ-H 2007: 我國推動生質燃料之政策方向與國際趨勢研析
Xu YH, Lu M (2010): Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183, 395-401
Young CC;Lin TC;Yeh MS;Shen FT, Chang JS (2005): Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain. World J Microb Biot 21, 1409-1414
Zhang X;Peterson C;Reece D;Haws R, Moller G (1998): Biodegradability of biodiesel in the aquatic environment. T Asae 41, 1423-1430
Zhang YL;Ma XX, Ran Y (2014): Sorption of phenanthrene and benzene on differently structural kerogen: Important role of micropore-filling. Environ Pollut 185, 213-218
校內:2025-01-17公開