| 研究生: |
劉育伶 Liu, Yu-Lin |
|---|---|
| 論文名稱: |
非浮接開關之零電流零電壓轉移柔切式升壓型
電力轉換器之分析研製及控制器設計 Analysis and Synthesis for a Novel Zero-Current-Zero-Voltage-Transition Soft-Switching Boost Power Converter with Non-Floating Switches |
| 指導教授: |
林鐘烲
Lin, Jong-Lick |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 零電壓零電流轉移柔切式升壓型電力轉換器 、小訊號模式 、控制器設計 |
| 外文關鍵詞: | small-signal model, ZCZVT soft-switching boost converter, controller design |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文乃設計非浮接開關之零電流零電壓轉移(Zero-Current-Zero-Voltage-Transition)柔切式升壓型電力轉換器,並推導出其小訊號數學模式,利用電路實作及IsSpice模擬以驗證其正確性,並設計使閉迴路系統具有穩壓功能的控制器,使輸出電壓不受線電壓變動及負載變動的影響。
ZCZVT升壓型轉換器係結合了ZVT與ZCT的優點,輔助開關在一個切換週期內切換至on兩次,產生兩次瞬態共振,使電路元件達到零電壓及零電流切換(ZVS/ZCS)的要求,解決了傳統PWM電力轉換器之高切換損失及共振式電力轉換器之高電壓/大電流的傳導損失及變頻控制等缺點,提昇了切換效率。本文中所設計之非浮接開關之ZCZVT柔切式升壓型電力轉換器,其主開關與輔助開關皆為非浮接式,因此,改善了實作上的困難,而電路所含的元件較少,更可降低成本。
本文利用雙時間尺度平均化法(AM-TTS),推導出ZCZVT升壓型電力轉換器之小訊號數學模式,以研究其動態行為,並量測電子電路實作之轉移函數以驗證數學模式之正確性。ZCZVT升壓型電力轉換器的阻尼比大於1,比傳統PWM電力轉換器有較好的動態響應。為了達到輸出穩壓的目的,吾人根據此數學模式,分別設計古典控制器與修正型積分可變結構(MIVSC)控制器。經由模擬與實作結果相互比較可知,所設計之MIVSC控制器,在負載變化或線電壓變動下均有較佳之穩壓效果。
In this thesis, a novel non-floating switches, zero-current-zero-voltage-transition (ZCZVT) soft-switching boost power converter is designed. The ac small signal mathematical mode for the ZCZVT boost converter is then derived. The accuracy of theoretical results is verified by experiment and simulation of IsSpice. In addition, two controllers are designed to achieve output voltage regulation. They are used to eliminate the effect of the variations of line voltage and load on the output voltage.
The ZCZVT soft-switching converter exhibits the advantages of both ZVT and ZCT converters. To achieve both zero voltage and zero current switching (ZVS and ZCS), the auxiliary switch of the ZCZVT converter turns on twice and two resonances occur during one switching period. This converter overcomes the existing problems of high switching losses of the conventional PWM converters and the conduction losses due to high voltage and current stresses. As a result, both of the main switch and the auxiliary switch in ZCZVT soft-switching converters are non-floating so that the driving circuit is easier to be designed. Moreover, fewer components in the converter also reduce the cost efficiently.
In this thesis, the two-time-scale averaging method (AM-TTS) is used to derive the small signal mathematical model for a ZCZVT soft-switching converter. Based on this model, the system dynamic behaviors can be investigated. Then the theoretical results are experimentally verified. It is interesting to note that the damping ratio of the ZCZVT converter is greater than one so that the dynamic response of the ZCZVT converter is better than the traditional PWM converter. According to the small signal mathematical model a classical controller and a modified integral variable structure controller (MIVSC) are designed to achieve output voltage regulation. The simulation results and experimental responses show that the MIVSC controller has better regulation capacity under the variations of load and line voltage variations than classical controller.
[AbB2000] Abu-Qahouq, J. and I. Batarseh, “Generalized analysis of soft-switching DC-DC converters,” IEEE PESC, pp. 185-192, 2000.
[ABBHEV94] Aggoune, M. E., F. Boudjemaa, A. Bensenouce, A. Hellal, M. R. Elemesai and S. V. Vadari, “Design of Variable Structure Voltage Regulator Using Pole Assignment Technique,” IEEE Trans. on Automatic Control, Vol. 39, No. 10, pp. 2106-2111, 1994.
[BBML90] Barbi, I., J. C. O. Bolacell, D. C. Martin and F. B. Libano, “Buck Quasi-Resonant Converter Operating at Constant Frequency: Analysis, Design and Experimentation,” IEEE Trans. on Power Electronics, pp. 276-283, 1990.
[Che93] Chen, C. T., Analog & Digital Control System Design, Saunder College Publishing, Fort Worth, 1993.
[ChL97] Chen, Y. T. and W. H. Liu, “The Implementation and Analysis for the ZVSPWM Forward Converter Using a Saturable Circuit,” Proceeding of the 18th Symposium on Electrical Power Engineering, R.O.C., pp. 328-333, 1997.
[ChW92] Chern, T. L. and Y. C. Wu, “An Optimal Variable Structure Control with Integral Compensation for Electrohydraulic Position Servo Control Systems,” IEEE Trans. on Industrial Electronics, Vol. 39, No. 5, pp. 460-463, 1992.
[Eri99] Erickson, R. W., Fundamentals of Power Electronics, Kluwer Academic Publishers, 5th printing, Massachusetts, 1999.
[FrM87] Freeland, S. and R. D. Middlebrook, “A Unified Analysis of Converters with Resonant Switches,” IEEE PESC, pp. 20-30, 1987.
[FuH99] Fuentes, R. C. and H. L. Hey, “An Improved ZCS-PWM Commutation Cell for IGBT's Application,” IEEE Trans. on Power Electronics, Vol. 14, No. 5, pp. 939-948, 1999.
[HeS98] Hey, H. L. and C. M. O. Stein, “A New Family of Soft-Switching DC-DC PWM Converters Using a True ZCZVT Commutation Cell,” IEEE IECON, pp. 1030-1035, 1998.
[HLL92] Hua, G., C. S. Leu and F. C. Lee, “Novel Zero-Voltage-Transition PWM Converter,” VPEC Seminar, pp. 81-88, 1992.
[HLL94] Hua, G., C. S. Leu and F. C. Lee, “Novel Zero-Voltage-Transition PWM Converter,” IEEE Trans. on Power Electronics, Vol. 9, pp. 212-219, 1994.
[HuL95] Hua, G. and F. C. Lee, “Soft-Switching Techniques in PWM Converters,” IEEE Trans. on Industrial Electronics, Vol. 42, No. 6, pp. 595-603, 1995.
[JJJ2001] Jain, N., P. Jain and G. Joos, “Analysis of a Zero Voltage Transition Boost Converter using a Soft Switching Auxiliary Circuit with Reduced Conduction Losses,” IEEE PESC, pp. 1799-1804, 2001.
[JoY2000] Jovanovic, M. M. and J. Yungtaek, “A Novel Active Snubber for High-Power Boost Converters,” IEEE Trans. on Power Electronics, Vol. 15, pp. 278-284, 2000.
[JTL88] Joranovic, M. M., W. A. Tabisz and F. C. Lee, “Zero-Voltage-Switching Technique in High-Frequency Off-Time Converters,” IEEE APEC, pp. 23-32, 1988.
[KLCC2001] Kim, J. H., D. Y. Lee, H. S. Choi and B. H. Cho, “High Performance Boost PFP (Power Factor Pre-Regulator) with an Improved ZVT (Zero Voltage Transition) Converter,” IEEE APEC, pp. 337-342, 2001.
[LiC97] Lin, J. L. and S. F. Chiou, Quasi-Resonant Zero-current Switch and Buck Converter with Current Feedback DC-DC Power Converters: Implementation, Analysis and Controllers Design, NCKU Master Thesis, 1997.
[LiC99] Lin, J. L. and C. H. Chang, Modeling and Controller Design for Zero-Voltage-Transition Soft-Switching Boost Power Converter, NCKU Master Thesis, 1999.
[LiH2001] Lin, J. L. and C. H. Hsi, Modeling and Controller Design for Zero-Current-Zero-Voltage-Transition Soft-Switching Boost Power Converter, NCKU Master Thesis, 2001.
[LiL90] Lin, K. H. and F. C. Lee, “Zero-Voltage Switching Technique in DC/DC Converters,” IEEE Trans. on Power Electronics, Vol. 5, pp. 293-304, 1990.
[LiL96] Lin, J. L. and J. S. Lew, Analysis and Robust Controller Design for a Resonant DC-to-DC Power Converter, NCKU Master Thesis, 1996.
[LiY97] Lin, J. L. and W. J. Yang, “Modified IVSC Stabilization and Swing up Control of an Inverted Pendulum,” R.O.C. Automatic Control Conference, pp. 150-153, 1997.
[LLH2001] Lee, M. K., D. Y. Lee and D. S. Hyun, “New Zero-Current-Transition PWM DC/DC Converters without Current Stress,” IEEE PESC, pp. 1069-1074, 2001.
[LOL87] Liu, K. H., R. Oruganti and F. C. Lee, “Quasi-Resonant Converter: Topologies and Characteristics,” IEEE Trans. on Power Electronics, Vol. 2, No. 1, pp. 26-71, 1987.
[MaC91] Maksimoric, P. and S. Cuk, “Constant Frequency Control of Quasi-Resonant-Converter,” IEEE Trans. on Power Electronics, Vol. 6, No. 1, pp. 141-150, 1991.
[MaL97] Mao, H. and F. C. Lee, “Improved Zero-Current Transition Converters for High-Power Applications,” IEEE Trans. on Industry Applications, Vol. 33, No. 5, pp. 1220-1231, 1997.
[NTW95] Ned, M., M. U. Tore and P. R. William, Power Electronics, 2nd Ed., John Wiley, 1995.
[ReM83] Redl, R. and R. Molnar, “Class E Resonant Regulated DC/DC Power Converter: Analysis of Operation, and Experimental Results at 1.5MHz,” IEEE PESC, pp. 55-60, 1983.
[RLYH2000] Ryu, S. H., D. T. Lee, S. B. Yoo and D. S. Hyun, “A Modified ZVZCS Commutation Cell for All Active Switches in PWM Converters,” IEEE PESC, pp. 760-765, 2000.
[StH2000] Stein, C. M. O. and H. L Hey, “A True ZCZVT Commutation Cell for PWM Converters,” IEEE Trans. on Power Electronics, Vol. 15, No. 1, pp. 185-193, 2000.
[SuG92] Sun, J. and H. Grotstollen, “Averaged Modeling of Switching Power Converters: Reformulation and Theoretical Basis,” IEEE PESC, pp. 1162-1172, 1992.
[SuG93] Sun, J. and H. Grotstollen, “Averaged Modeling and Analysis of Resonant Converters,” IEEE PESC, pp. 707-713, 1993.
[TaL88] Tabisz, W. A. and F. C. Lee, “Zero-Voltage-Switching Multi-Resonant Technique: a Novel Approach to Improve Performance of High-Frequency Quasi-Resonant Converters,” IEEE PESC, pp. 9-17, 1988.
[TsC98a] Tseng, C. J. and C. L. Chen, “Novel ZVT-PWM Converters with Active Snubbers,” IEEE Trans. on Power Electronics, Vol. 13, No. 5, pp. 861-869, 1998.
[TsC98b] Tseng, C. J. and C. L. Chen, “A Passive Lossless Snubber Cell for Nonisolated PWM DC/DC Converters,” IEEE Trans. on Industrial Electronics, Vol. 45, No. 4, pp. 593-601, 1998.
[Utk77] Utkin, V. I., “Variable Structure Systems with Sliding Modes,” IEEE Trans. on Automatic Control, Vol. 22, No. 2, pp. 212-222, 1977.
[WBC99] Wakabayashi, F. T., M. J. Bonato and C. A. Canesin, “A New Family of Zero-Current-Switching PWM Converter,” IEEE PESC, Vol. 1, pp. 451-456, 1999.
[WeI95] Wei, H. and A. Ioinovici, “DC-DC Zero-Voltage-Transition Converter with PWM Control and Low Stress on Switches,” IEEE APEC, pp. 523-529, 1995.
[YaL93] Yang, L. and C. Q. Lee, “Analysis and Design of Boost Zero-Voltage-Transition PWM Converter,” IEEE APEC, pp. 707-713, 1993.