簡易檢索 / 詳目顯示

研究生: 彭文郁
Pong, Wen-Yu
論文名稱: 奈米結晶性鈀摻雜二氧化鈰觸媒在一氧化碳氧化反應上之研究
Studies on CO Oxidation over Nanocrystalline Pd-doped CeO2 Catalysts
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 99
中文關鍵詞: 針狀晶形一氧化碳氧化奈米粉體二氧化鈰觸媒
外文關鍵詞: catalysis, CO oxidation, needle-like, morphology, cerium oxide, nanoparticles
相關次數: 點閱:115下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,首先製備鈀摻雜CeO2、針狀及顆粒狀CeO2奈米微粉以作為氧化觸媒。實驗中係以一氧化碳之氧化反應為模式反應,探討CeO2晶形、鍛燒溫度及鈀含浸步驟對觸媒催化活性之影響。另外,改變反應進料氣體組成進行動力學研究,並輔以TPR、FTIR等特性分析,以解析各式觸媒之催化行為。
    實驗結果顯示,針狀粉體比顆粒狀擁有較大比表面積,且外露較高能之(100)與(110)面,故其活性較高。TPR結果亦顯示,針狀粉體具有較低之還原溫度,易於釋出晶格氧來進行反應。另外,隨著鍛燒溫度上升,觸媒之催化活性降低,此係因比表面積減小之故。
    在Pd/CeO2觸媒之製備中,採用高溫、低溫兩種鍛燒製程來進行。實驗結果顯示,低溫製備之觸媒擁有較高之催化活性。比較CeO2與Pd/CeO2觸媒發現,含浸鈀金屬可明顯提高反應性。由TPR分析結果顯示,鈀與CeO2間存在一相互作用力,故可大幅降低反應溫度。
    進一步,以四種觸媒(CN3, CP3, Pd/CN3及Pd/CP3)來進行動力學研究。各觸媒一氧化碳之催化氧化反應活性依序為Pd/CN3 > Pd/CP3 > CN3 > CP3。利用回歸分析可求出此四種觸媒之反應活化能分別為16, 27, 7.4 與 11.3 kJ/mol。值得一提的是,針狀觸媒之活化能較顆粒狀觸媒為低,此與觸媒外露之晶面之分析結果相吻合。

    Palladium-doped CeO2 (Pd/CeO2) nanoparticles as well as the needle-like(N-) and particulate(P-) CeO2 nanoparticles synthesized in this work were used as oxidation catalysts. Experimentally, the oxidation of carbon monoxide was employed as the model reaction for this purpose. The influences of particle shape, calcination temperature, palladium impregnation procedure on the activities of catalysts were investigated. Besides, the reactions with different feed compositions were carried out under various temperatures for the kinetic study. Then, the catalysts were further characterized by using TPR and FTIR analyses in order to elucidate the activity of catalysts in the CO oxidation.
    From the experimental results, as compared with P-CeO2 nanoparticles, N-CeO2 was found to have larger surface area with a large portion of relatively higher-energy facets, i.e., {100} and {110} planes exposed on the outer surface. Therefore, higher activity for CO oxidation was obtained for the N-CeO2 nanoparticles. The result of TPR revealed that the N-CeO2 nanoparticles showed a relatively lower reduction temperature due to the easier release of oxygens from N-CeO2 surface. Besides, owing to the reduction of surface area, the activities of catalysts were decreased as the calcination temperature increased.
    Subsequently, high-temperature and low-temperature processes were employed for preparation of Pd/CeO2 catalysts, respectively. From the results of activity tests, it was found that the Pd/CeO2 catalyst prepared by low-temperature process had higher activity than that prepared at high temperature. To further compare the activities of CeO2 and Pd/CeO2, it showed that the activity of Pd/CeO2 was largely promoted with the presence of Pd. This was attributed from the interaction between Pd and CeO2 which would therefore obviously lower the reduction temperature as seen in TPR analysis.
    Furthermore, four kinds of catalysts, i.e., CN3, CP3, Pd/CN3 and Pd/CP3, were used for the kinetic study. The results showed that the activity of catalyst on CO oxidation was in the order as Pd/CN3 > Pd/CP3 > CN3 > CP3. By using the regression analysis, the activation energies for CN3, CP3, Pd/CN3 and Pd/CP3 catalysts were estimated as 16, 27, 7.4 and 11.3 kJ/mol, respectively. It is worthy to note that activation energies of needle-like catalysts were smaller than those of corresponding particulate ones, which was in a good agreement with the result of exposed facets for different catalysts.

    誌謝………………………………………………………………………….... I 摘要…………………………………………………………………………… II Abstract……………………………………………………………………….. III 各章概要……………………………………………………………………... V List of Contents………………………………………………………………. XII List of Tables…………………………………………………………………. XV List of Figures………………………………………………………………… XVI Chap 1 Introduction………………………………………………………… 1 1.1 Properties of CeO2……………………………………………... 1 1.1.1 Physical properties………………………………………. 1 1.1.2 Chemical properties……………………………………… 1 1.1.3 Optical properties………………………………………... 2 1.2 Preparation method of CeO2 and Pd/CeO2…………………….. 2 1.2.1 Preparation methods…………………………………….. 2 1.2.2 Precipitation method for preparing CeO2………………... 3 1.2.3 Wetness Impregnation for preparing Pd/CeO2…………... 4 1.3 Application of CeO2……………………………………………. 4 1.3.1 Ultraviolet (UV) absorbents……………………………… 4 1.3.2 Buffer layer with silicon wafer…………………………… 4 1.3.3 Gas sensors……………………………………………… 5 1.3.4 Photocatalytic oxidation of water………………………... 5 1.3.5 Water-gas-shift catalysts…………………………………. 5 1.4 Motivation and objectives………………………………………. 6 1.5 Organization……………………………………………………. 6 Chap 2 Theoretical………………………………………………………..... 14 2.1 Formation of CeO2 nanoparticles by precipitation……………... 14 2.1.1 Nucleation……………………………………………….. 14 2.1.2 Growth…………………………………………………... 15 2.2 CO Oxidation over CeO2 nanoparticles………………………… 17 2.2.1 Adsorption of CO on CeO2…………………………....... 17 2.2.2 Adsorption of O2 on CeO2………………………………. 18 2.2.3 Effect of exposed CeO2 surface…………………………. 19 2.3 CO Oxidation over Pt/CeO2 nanoparticles……………………... 20 2.3.1 Eley-Rideal mechanism…………………………………... 20 2.3.2 Langmnir-Hinselwood mechanism………………………. 20 2.3.3 Strong Metal-supported interaction(SMSI)………………. 21 Chap 3 Experimental Details……………………………………………….. 26 3.1 Chemicals and materials………………………………………… 26 3.1.1 Chemicals………………………………………………... 26 3.1.2 Gas………………………………………………………. 26 3.2 Instruments and measurements…………………………………. 26 3.2.1 Instruments………………………………………………. 26 3.2.2 Instruments for analysis...…………...…………………… 27 3.3 Preparation of catalysts………………………………………… 28 3.3.1 Preparation of CeO2……………………………………... 28 3.3.2 Preparation of Pd/CeO2………………………………….. 28 3.4 Characterization of catalysts……………………………………. 29 3.4.1 BET analysis…………………………………………….. 29 3.4.2 TEM and HRTEM analysis……………………………… 29 3.4.3 TPR analysis…………………………………………….. 29 3.4.4 XRD analysis…………………………………………….. 30 3.4.5 FT-IR analysis…………………………………………… 30 3.4.6 AA analysis……………………………………………… 31 3.5 Activity test of catalysts………………………………………... 31 3.5.1 Intrinsic reaction setup…………………………………... 31 3.5.2 CO oxidation reaction…………………………………… 31 3.5.3 Kinetic model of CO oxidation reaction…………………. 33 Chap 4 CO Oxidation over CeO2 Catalysts……………………………….. 42 4.1 Objective……………………………………………………….. 42 4.2 Characterization of CeO2 catalysts……………………………... 42 4.2.1 BET analysis…………………………………………….. 42 4.2.2 XRD analysis…………………………………………….. 43 4.2.3 TEM analysis…………………………………………….. 44 4.3 CO oxidation…………………………………………………… 45 4.4 Interpretation by TPR analysis…………………………………. 46 Chap 5 CO Oxidation over Pd/CeO2 Catalysts…………………………… 57 5.1 Objectives………………………………………………………. 57 5.2 Characterization of Pd/CeO2 catalysts………………………….. 57 5.2.1 BET analysis…………………………………………...... 57 5.2.2 XRD analysis…………………………………………….. 58 5.2.3 CO oxidation…………………………………………….. 58 5.3 Comparison of activity between Pd/CeO2 and CeO2 catalysts…. 59 5.3.1 Properties of catalysts…………………………………… 59 5.3.2 CO oxidation…………………………………………….. 60 5.3.3 Interpretation by TPR analysis…………………………... 61 Chap 6 Oxidation Kinetics………………………………………………….. 68 6.1 Objectives……………………………………………………….. 68 6.2 Reaction kinetics for CO oxidation…………………………….. 68 6.3 FTIR analysis…………………………………………………... 72 6.3.1 CO adsorbed on CeO2…………………………………... 72 6.3.2 CO adsorbed on Pd/CeO2………………………………. 73 Chap 7 Conclusions and Propective……………………………………….. 90 7.1 Conclusions…………………………………………………….. 90 7.2 Propective……………………………………………………… 91 References…………………………………………………………………….. 92

    [1] H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, “Encyclopedia of Chemical Technology”, Vol. 5, John Wiley & Sons, New York (1970).

    [2] B. A. Stiles, “Catalyst Supported and Supported Catalysts”, Butterworths, Boston (1987).

    [3] A. Trovarelli, “Catalytic Properties of Ceria and CeO2-Containing Materials”, Catal. Rev., 38, 439-520 (1996).

    [4] T. X. T. Sayle, S. C. Parker and C. R. A. Catlow, “Surface Oxygen Vacancy Formation on CeO2 and Its Role in the Oxidation of Carbon-Monoxide”, J. Chem. Soc. Commun., 14, 977-978 (1992).

    [5] F. Chevire, F. Munoz, C. F. Baker, F. Tessier, O. Larcher, S. Boujday, C. Colbeau-Justin and R. Marchand, “UV Absorption Properties of Ceria-Modified Compositions within the Fluorite-type Solid Solution CeO2-Y6WO12”, J. Solid State Chem., 179, 3184-3190 (2006).

    [6] A. B. Corradi, F. Bondioli, A. M. Ferrari and T. Manfredini, “Synthesis and Characterization of Nanosized Ceria Powders by Microwave-Hydrothermal Method”, Mater. Res. Bull., 41, 38-44 (2006).

    [7] D. A. Ward and E. I. Ko, “Preparing Catalytic Materials by the Sol-gel Method”, Ind. Eng. Chem. Res., 34, 421-433 (1995).

    [8] P. L. Chen and I. W. Chen, “Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method”, J. Am. Ceram. Soc., 76, 1577-1583 (1993).

    [9] S. Jung, C. Lu, H. He, K. Ahn, R. J. Gorte and J. M. Vohs, “Influence of Composition and Cu Impregnation Method on the Performance of Cu/CeO2/YSZ SOFC Anodes”, J. Power Sources, 154, 42-50 (2006).

    [10] E. S. Bickford, S. Velu, C. Song, “Nano-Structure CeO2 Supported Cu-Pd Bimetallic Catalysts for the Oxygen-Assisted Water-Gas-Shift Reaction”, Catal. Today, 99, 347-357 (2005).

    [11] B. Yan and W. Zhao, “Wet Chemical Synthesis of Nanometer CeO2 with Strong Ultraviolet Absorption Property by In Situ Assembly of Hybrid Precursors”, Mat. Sci. Eng. B-Solid, 110, 23-26 (2004).

    [12] J. Tashiro, A. Sasaki, S. Akiba, A. Satoh, T. Watanabe, H. Funakubo and M. Yoshimoto, “Room-Temperature Epitaxial Growth of Indium Tin Oxide Thin Films in Si Substrate With an Epitaxial CeO2 Ultrathin Buffer”, Thin Solid Films, 415, 272-275 (2002).
    [13] R. Bene, I. V. Perczel, F. Réti, F. A. Meyer, M. Fleisher and H. Meixner, “Chemical Reactions in the Detection of Acetone and NO by a CeO2 Thin Film”, Sensor Actuat., B 71, 36-41 (2000).

    [14] S. Matsubara, S. Kaneko, S. Morimoto, S. Shimizu, T. Ishihara and Y. Takita, “A Practical Capacitive Type CO2 Sensor Using CeO2/BaCO3/CuO Ceramics”, Sensors Actuat. B, 65, 128-132 (2000).

    [15] G. R. Bamwenda and H. Arakawa, “Cerium Dioxide as a Photocatalyst for Water Decomposition to O2 in the Present of Ceaq(4+) and Feaq(3+) Species”, J. Mol. Catal. A-Chem., 161, 105-113 (2000).

    [16] R. J. Gorte and S. Zhao, “Studies of the Water-Gas-Shift Reaction with Ceria-Supported Precious Metals”, Catal. Today, 104, 18-24 (2005).

    [17] D. Zhang, H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu and W. Yu “Synthesis of CeO2 Nanorod via Ultrasonication Assisted by Polyethylene Glycol”, Inorg. Chem., 46, 2446-2451 (2007).

    [18] D. Zhang, X. Zhang, X. Ni, J. Song and H. Zheng, “Optical and Electrochemical Properties of CeO2 Spindles”, Chem. Phys. Chem., 7, 2468-2470 (2006).

    [19] D. Zhang, X. Zhang, H. Zheng, X. Ni and J. Song, “Fabrication of Rod-like CeO2: Characterization, Optical and Electrochemical”, Solid State Sci., 8, 1290-1293 (2006).

    [20] X. D. Zhou, W. Huebner and H. U. Anderson, “Room-Temperature Homogeneous Nucleation Synthesis and Thermal Stability Single Crystal CeO2”, Appl. Phys. Lett., 80, 3814-3816 (2002).

    [21] R. Li, S. Yin, S. Yabe, M. Yamashita, S. Momose, S. Yoshida and T. Sato, “Preparation and Photochemical Properties of Nanoparticles of Ceria Doped with Zinc Oxide”, Brit. Ceram. Trans., 101, 9-13 (2002).

    [22] B. Djuričić and S. Pickering, “Nanostructured Cerium Oxide: Precipitation and Properties of Weakly-agglomerated Powders”, J. Euro. Ceram. Soc., 19, 1925-1934 (1999).

    [23] E. Matijević and W. P. Hsu, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds”, J. Colloid Interf. Sci., 118, 506-523 (1987).

    [24] B. Aiken, W. P. Hsu and E. Matijević, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium(III) and Mixed Yttrium(III)/cerium(III) Systems”, J. Am. Ceram. Soc., 71, 845-853 (1988).

    [25] H. Choi, J. Moon and H. Shim, “Preparation of Nanocrystalline CeO2 by the Precipitation Method and Its Improved Methane Oxidation Activity”, J. Am. Ceram. Soc., 89, 343-345 (2006).

    [26] J. G. Li, T. Ikegami, J. H. Lee and T. Mori, “Characterization and Sintering of Nanocrystalline CeO2 Powders Synthesized by a Mimic Alkoxide Method”, Acta Mater., 49, 419-426 (2001).

    [27] X. D. Zhou, W. Huebner and H. U. Anderson, “Processing of Nanometer-scale CeO2 Particles,” Chem. Mater., 15, 378-382 (2003).

    [28] A. Muto, T. Bhaskar, Y. Kaneshiro, Md. A. Uddin, Y. Sakata, Y. Kusano and K. Murakami, “Utilization of Waste Biomass and Replacement of Stoichiometric Reagents for the Synthesis of Nanocrystalline CeO2, ZrO2 and CeO2-ZrO2”, Green Chem., 5, 480-483 (2003).

    [29] F. Zhang, S. P. Yang, W. M. Wang, H. M. Chen, Z. H. Wang and X. B. Yu, “Preparation of Nanocrystalline Ceramic Oxide Powders in the Presence of Anionic Starburst Dendrimer”, Mater. Lett., 58, 3285-3289 (2004).

    [30] M.C. Cabús-Llauradó, Y. Cesteros, F. Medina, P. Salagre and J.E. Sueiras “Microporous High-surface Area Layered CeO2”, Micropor. Mesopor. Mat., 100, 167-172 (2007).

    [31] H. Y. Chang and H. I. Chen, “Morphological Evolution for CeO2 Nanoparticles Synthesized by Precipitation Technique”, J. Cryst. Growth, 283, 457-468 (2005).

    [32] M. Lundberg, B. Skarman and L. Wallenberg, “Crystallography and Porosity Effects of CO Conversion on Mesoporous CeO2”, Micropor. Mesopor. Mat., 69, 187-195 (2004).

    [33] E. Aneggi, J. Llorca, M. Boaro, A. Trovarelli, “Surface-Structure Sensitivity of CO Oxidation over Polycrystalline Ceria Powders”, J. Catal., 234, 88-95 (2005).

    [34] T Bunluesin, R. J. Gorte and G. W. Graham, “CO Oxidation for the Characterization of Reducibility in Oxygen Storage Components of Three-Way Automotive Catalysts”, Appl. Catal. B-Environ., 14, 105-115 (1997).

    [35] M. Fernández-García, A. Martínez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa and J. Soria, “Influence of Ceria in Pd Activity for the CO+O2 Reaction”, J. Catal., 187, 474-485 (1999).

    [36] S. Oh and G. Hoflund, “Chemical State Study of Palladium Powder and Ceria-Supported Palladium During Low-Temperature CO Oxidation”, J. Phys. Chem. A., 110, 7609-7613 (2006).

    [37] O. Pozdnyakova, D. Teshner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál and R. Schlögl, “Preferential CO Oxidation in Hydrogen (PROX) on Ceria-Supported Catalysts, Part II: Oxidation State and Surface Species on Pd/CeO2 under Reaction Conditions, Suggestion Reaction Mechanism”, J. Catal., 237, 17-28 (2006).

    [38] R. Monteiro, L. Dieguez and M. Schmal, “The Role of Pd Precursors in the Oxidation of Carbon Monoxide over Pd/Al2O3 and Pd/CeO2/Al2O3 Catalysts”, Catal.Today, 65, 77-89 (2001).

    [39] H. Zhu, Z. Qin, W. Shan, W. Shen and J. Wang, “Low-Temperature Oxidation of CO over Pd/CeO2-TiO2 Catalysts With Different Pretreatment”, J. catal., 233, 41-50 (2005).

    [40] G. Dong, J. Wang, Y. Gao and S. Chen, “A novel catalyst for CO oxidation at low temperature”, Catal. Lett., 58, 37-41 (1999).

    [41] G. Avgouropoulos, J. Papavasiliou, T. Tabakova, V. Idakiev and T. Ioannides, “A Comparative Study of Ceria-Supported Gold and Copper Oxide Catalysts for Preferential CO Oxidation Reaction”, Chem. Eng. J., 124, 41-45 (2006).

    [42] N. Russo, D. Fino, G. Saracco and V. Specchia, “Supported Gold Catalysts for CO Oxidation”, Catal. Today, 117, 214-219 (2006).

    [43] U. Oran and D. Uner, “Mechanisms of CO Oxidation Reaction and Effect of Chlorine Ions on the CO Oxidation Reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 Catalysts”, Appl. Catal. B-Enverion., 54, 183-191. (2004).

    [44] Y. Liu, T. Hayakawa, T. Ishii, M. Kumagai, H.Yasuda, K. Suzuki, S. Hamakawa, and K. Murata, “Methanol Decomposition to Synthesis Gas at Low Temperature over Palladium Supported on Ceria-Zirconia Solid Solution”, Appl. Catal. A-Gen., 210, 301-314 (2001).

    [45] S. Hilaire, X. Wang, T. Luo, R.J. Gorte and J. Wagner, “A Comparative Study of Water-Gas-Shift Reaction over Ceria Supported Metallic Catalysts”, Appl. Catal. A-Gen., 215, 271-278 (2001).

    [46] G. Pecchi, P Reyes, R Zamora, T López, R. Gómez, “Effect of the Promoter and Support the Catalytic Activity of Pd-CeO2-Supported Catalysts for CH4 Combustion”, J. Chem. Technol. Biot., 80, 268-272 (2005).

    [47] W. Shen, Y. Ichihashi, M. Okumura and Y. Matsumura, “Methanol Synthesis from Carbon Monoxide and Hydrogen Catalyzed over Pd/CeO2 Prepared by the Deposition-Precipitation Method”, Catal. Lett., 64, 23-25 (2000).

    [48] T Bunluesin, R. J. Gorte and G. W. Graham, “Studies of the Water-Gas-Shift Reaction on Ceria-Supported Pt, Pd, and Ph: Implications for Oxygen-Storage Properties”, Appl. Catal., B- Environ. 15, 107-114 (1998).

    [49] R. Leppelt, B. Schumacher, V. Plzak, M. Kinne and R. J. Behm, “Kinetics and Mechanism of the Low-Temperature Water–Gas Shift Reaction on Au/CeO2 Catalysts in an Idealized Reaction Atmosphere”, J. Catal., 244, 137-152 (2006).

    [50] S. Naito, T. Kasahara and T. Miyao, “Transformation of Methane Formation Sites Into Methanol Formation Ones During CO-H2 Reaction over Pd/CeO2 in Its SMSI State”, Catal. Today, 74, 201-206 (2002).

    [51] A. Parinyaswan, S. Pongstabodee and A. Luengaruemitchai, “Catalytic Performances of Pt-Pd/CeO2 Catalysts for Selective CO Oxidation”, Int. J. Hydrogen Ener., 31, 1942-1949 (2006).

    [52] M. A. Shalabi “Kinetic Modeling of CO Oxidation on Pt/CeO2 in a
    Gradientless Reaction”, J. Chem. Tech. Biot., 65, 317-324 (1996).

    [53] J. W. Mullin, “Crystallization” Butterworth-Heinemann, Boston (1993).

    [54] C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystals Assemblies”, Annu. Rev. Mater. Sci., 30, 545-610 (2000).

    [55] F. Huang, H. Zhang and J. F. Banfield, “Two-Stage Crystal- Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS”, Nano. Lett., 3, 373-378 (2003).

    [56] M. Breysse, M. Guenin, B. Claudel and J. Veron, “Catalysis of Carbon Monoxide Oxidation by Cerium Dioxide”, J. Catal., 28, 54-62 (1973).

    [57] F. Bozon-Verduraz and A. Bensalem, “IR Studies of Cerium Dioxide-Influence of Impurities and Defects”, J. Chem. Soc. Faraday Trans, 90, 653-657 (1994).

    [58] Y. Sakata, T. Arai, K. Domen, K. Maruya and T. Onishi “Carbon Monoxide and Carbon Dioxide Absoption on Cerium Oxide studies by Fourier-transform Infrared Spectroscopy”, J. Chem. Soc. Faraday Trans., 85, 929-943 (1989).

    [59] C. Binet, A. Badri, M. Boutonnet-Kizling and J. Lavalley, “FTIR Study of Carbon-Monoxide Adsorption on Ceria-CO2(2-) Carbonate Dianion Adsorbed Species”, J. Chem. Soc. Faraday Trans., 90, 1023-1028 (1994).

    [60] X. Zhang and K. J. Klabunde, “Superoxide (O2-) On the Surface of Heat-Treated Ceria-Intermediates in the Reversible Oxygen to Oxide Transformation”, Inorg. Chem., 31, 1706-1709 (1992).

    [61] T. X. T. Sayle, S. C. Parker, and C. R. A. Catlow, “Surface Oxygen Vacancy Formation on CeO2 and Its Role in the Oxidation of Carbon-Monoxide”, J. Chem. Soc. Chem. Commun., 14, 977-978 (1992).

    [62] C. Li, K. Domen, K. Maruya, and T. Onishi, “Dioxygen Adsorption on Well-Outgassed and Partially Reduced Cerium Oxide Studied by FT-IR”, J. Am. Chem. Soc., 111, 7683-7687 (1989).
    [63] Michael Nolan, Joanne E. Fearon, Greame W. Watson “Oxygen Vacancy Formation and Migration in Ceria”, Solid State Ionics, 177, 3069-3074 (2006).

    [64] José C. Conesa, “Computer Modeling of Surface and Defects on Cerium Dioxide”, Surf. Sci., 339, 337-352 (1995).

    [65] C. N. Costa, S. Y. Chistou, G. Georgiou and A. M. Efstathiou, “Mathematical modeling of the oxygen storage capacity phenomenon studies by CO pulse transient experiments over Pd/CeO2 catalyst ”, J. Catal. 219, 259-272 (2003).

    [66] S. Y. Chistou, C. N. Costa, A. M. Efstathiou, “A two-step reaction mechanism of oxygen release from Pd/CeO2: mathematical modeling based on step gas concentration experiments”, Topics in Cataly 30, 325-331 (2004).

    [67] S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. Pérez Omil and J. M. Pintado, “Some Recent Result on Metal/Support Interaction Effects in NM/CeO2(NM: noble metal) Catalysts”, Catal. Today, 50, 175-206 (1999).

    [68] J. A. Wang, J. M. Dominguez, A. Montoya, S. Castillo, J. Navarrete, M. Moran-Pineda, J. Reyes-Gasga and X. Bokhimi, “New Insights into the Defective Structure and Catalytic Activity of Pd/CeO2”, Chem. Mater., 14, 4676-4683 (2002).

    [69] X. D. Zhou and W. Huebner, “Size- induced lattice relaxation in CeO2 nanoparticles”, Appl. Phy. Lett. 79, 3512-3514, (2001)

    [70] M. Sohrabi and A. Irandoukht, “The Effect of Calcination Temperature on the Activity and Certain Physicochemical Properties of Water-Gas-Shift Reaction Catalysts”, Afinidad, 59, 267-271 (2002).

    [71] S. Tsunekawa, J. T. Wang and Y. Kawazoe, “Lattice Constant and Electron Gap Energies of Nano- and Subnano-sized Cerium Oxide From the Experiment From the Experiments and First-Principles Calculations”, J. Alloy. Compd., 408, 1145-1148 (2006).

    [72] S. Tsunekawa, S. Ito and Y. Kawazoe, “Surfaces Structures of Cerium Oxide Nanocrystalline Particles From the Size Dependence of the Lattice Parameters”, Appl. Phy. Lett., 85, 3845-3847 (2004).

    [73] S. tsinelawa, R. Sahara, Y. Kawazoe and K. Ishikawa, “Lattice Relaxation of Monosize CeO2-x Nanocrystalline Particles”, Appl. Surf. Sci., 152, 53-56 (1999).

    [74] A. Tschöpe, D. Schaadt, R. Birringer and J. Y. Ying, “Catalytic Properties of Nanostructure Metal Oxides Synthesized by Inert Gas Condensation”, Nanostructrured Materials 9, 423-432 (997).

    [75] K. Zhou, X. Wang, X. Sun, Q. Peng, and Y. Li “Enhanced Catalytic Activity of Ceria Nanorods From Well-Defined Reactive Crystal Planes”, J. Catal., 229, 206-212 (2005).

    [76] E. S. Putna, J. M. Vohs and R. J. Gorte, “Evidence for Weakly Bound Oxygen on Ceria Films”, J. Phys. Chem., 100, 17862-17865 (1996).

    [77] H. Cordatos, D. Ford and R. J. Gorte, “Simulated Annealing Study of the Structure and Reducibility in Ceria Clusters” J. Phys. Chem., 100, 18128-18132 (1996).

    [78] Y. Liu, T. Hayakawa, T. Ishii, M. Kumagai, H. Yasuda, K. Suzuki, S. Hamakawa and K. Murata, “Methanol Decomposition to Synthesis Gas at Low Temperature over Palladium Supported on Ceria-Zirconia Solid Solution”, Appl. Catal. A-Gen., 210, 301-314 (2001).

    [79] C. Force, E. Román, J. M. Guil and J. Sanz, “XPS and 1H NMR Study of Thermally Stabilized Rh/CeO2 Catalysts Submitted to Reduction/Oxidation Treatments”, Langmuir, 23, 4569-4574, (2007)

    [80] M. A. Shalabi “Kinetic Modeling of CO Oxidation on Pt/CeO2 in a Gradientless Reaction”, J. Chem. Tech. Biot., 65, 317-324 (1996).

    [81] H. Lieske and J. Volter, “Palladium Redispersion by Spreading of Palladium(II) Oxide in Oxygen Treated Palladium/Alumina” J. Phys. Chem., 89, 1841-1842 (1985).

    [82] M. Budart and H.S. Hwang, “Solubility of Hydrogen in Small Particles of Palladium”, J. Catal., 39, 44-52 (1975).

    [83] J. Benson, H. Hwang and M.K. Boudart, “Hydrogen-Oxygen Titration Method for the Measurement of Supported Palladium Surface Areas”, J. Catal., 30, 146-153 (1973).

    [84] Oh, S. H. and Eickel, C. C., “Effects of Cerium Addition on CO Oxidation Kinetics Over Alumina-Supported Rhodium Catalysts”, J. Catal., 112, 543-555 (1988).

    [85] F. Bozon-Verduraz and A. Bensalem “IR Studies of Cerium Dioxide: Influence of Impurities and Defects” J. Chem. Soc. Faraday Trans., 90, 653-657 (1994).

    [86] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Krőhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál and R. Schlőgl, “Preferential CO Oxidation in Hydrogen (PROX) on Ceria-Supported Catalysts, Part I: Oxidation State and Surface Species on Pt/CeO2 under Reaction Condition”, J. catal., 237, 1-16 (2006).

    [87] C. Binet, M. Daturi and J. Lavalley, “IR Study of Polycrystalline Ceria Properties in Oxidized and Reduced States”, Catal. Today, 50, 207-225 (1999).

    [88] M. Nolan and G. Watson, “The Surface Dependence of CO Adsorption on Ceria”, J. Phys. Chem. B., 110, 16600-16606 (2006).

    [89] M. Nolan, S. Parker and G. Watson, “Vibrational Properties of CO on Ceria Surface”, Surf. Sci., 600, L175-L178 (2006).

    [90] H. C. Yao, Y. F. Y. Yao, “Ceria in Automotive Exhaust Catalysts : I. Oxygen Storage” J. Catal. 86, 254-265 (1984).

    [91] R. H. Nibbelke, M. A. J. Campman, J. H. B. J. Hoebink, G. B. Marin, “Kinetic Study of the CO Oxidation over Pt/gamma-Al2O3 and Pt/Rh/CeO2/gamma-Al2O3 in the Presence of H2O and CO2” J. Catal. 171, 358-373 (1997).

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE