簡易檢索 / 詳目顯示

研究生: 鄭中豪
Cheng, Chung-Hao
論文名稱: 結合Wiimote與智慧地板之室內定位系統感測於移動載具之技術發展與應用
Development and Application of Mobile Carrier Technologies Based on Integration of Wiimote and Smart Floor Indoor Localization System
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 233
中文關鍵詞: 智慧生活室內定位智慧地板Wiimote四軸飛行載具全向輪移動載具群體機器人3D定位
外文關鍵詞: Indoor localization, forcing-based floor panel, quadcopter, intelligent living space
相關次數: 點閱:118下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著現代科技的蓬勃發展與普及,智慧生活空間之概念逐漸萌芽成長,大幅提升智慧型機器人的需求與重要性,機器人轉變為提供人們日常生活便利性的服務型機器人,改善人類生活品質且分擔工作負擔。此外群體機器人日益被重視,能被運用於複雜度較高的任務,且執行效率遠高於單一機器人。另一方面,室內定位技術對於機器人發展亦為重要研究議題之一,機器人於地形複雜的室內環境中執行任務,除了不可或缺的自主移動能力,定位環境能讓機器人得知各自位置,有效提升工作效率與可靠度。本文研究目標為提升移動載具於室內定位環境的操作可靠度,首先注重於室內定位環境的發展與建立,以智慧地板與Wiimote定位系統為主軸,發展整合性智慧地板室內定位系統,能有效地對目標進行公分等級的定位,同時與Wiimote 2D定位系統進行整合,發展多感測器之室內定位系統。接著結合Wiimote 3D定位系統與可控式IR LED陣列之概念,建立室內Wiimote 3D定位環境,觀測移動載具於定位環境中的地理位置與運動姿態。另一方面,本文以全向輪移動載具及四軸飛行載具為發展平台,首先發展自組式四軸飛行載具系統,建立開源式控制系統環境與發展人機介面系統,進一步整合Wiimote 3D定位系統,應用於飛行載具之3D空間定位、姿態感測與路徑監測。接著透過空間3D飛行載具與平面2D輪型載具的群體合作,發展群體移動載具於室內Wiimote 3D定位環境之定位與運動控制,展示多類型機器人能不受限於室內環境地形提供更多的服務內容,未來能進一步增加載具本身之感測設備,實踐更多與人們互動之功能,大幅提升載具的工作效能。

    A novel dual-type robot application based on integrated indoor 3D localization scheme has been proposed for exploring more feasible intelligent applications. This localization scheme integrates both force-sensing-based 2D floor panel localization and Wiimote-based 3D localization to construct an indoor 3D localization living space. A force-sensing floor panel has been extendedly developed for the purpose of indoor localization. Both a general localization algorithm model and calibration algorithm have been proposed for improving the extensive practicability and localization accuracy of the panel. In addition, the proposed system has been shown the feasibility to develop a sensor fusion localization system by integrating with Wiimote 2D localization system. Meanwhile, a self-assembled quadcopter has been developed for more possible intelligent application and utilized to interact with omni-robot based on Wiimote localization system in indoor 3D localization environment. Indoor 3D localization environment is constructed by controllable IR LED array for capturing the position of robots and human-machine interface with LabVIEW for monitoring the measured results. The testing results of floor panel obtained from a series of single touch tests have confirmed the improvement of localization performance of the panel. Besides, the preliminary results of the interaction between quadcopter and onmi-robot indicate the position of robots can be continuously detected in 3D localization environment. This dual-type mobile robot application based on integrated localization system is expected to have a tremendous potential on indoor intelligent living applications.

    目錄 摘要 I Abstract II Extended Abstract III 致謝 XVI 目錄 XVIII 表目錄 XXIV 圖目錄 XXV 符號說明 XXXIII 第一章 緒論 1 1.1前言 1 1.2研究源起 6 1.3相關研究簡介 9 1.4研究動機、目標與方法 13 1.5全文架構 18 第二章 研究背景介紹 21 2.1本章介紹 21 2.2智慧生活相關研究 23 2.3室內定位技術相關研究 26 2.4室內機器人相關研究 33 2.5室內飛行載具相關研究 38 2.6本章結論 42 第三章 Wiimote 紅外線定位技術 45 3.1本章介紹 45 3.2 Wiimote硬體特色與相關研究 47 3.2.1 Wiimote硬體架構及特色 47 3.2.2 Wiimote相關研究 49 3.3 Wiimote 2D平面定位技術之相關研究 50 3.4 Wiimote 3D空間定位技術之相關研究 54 3.5 Wiimote 3D定位系統之定位性能實驗與結果 56 3.5.1 Z方向定位性能之校正實驗 56 3.5.2測試真實環境之系統定位實驗 58 3.6本章結論 61 第四章 智慧地板室內定位技術之整合發展 63 4.1本章介紹 63 4.2智慧地板室內定位系統介紹 65 4.3智慧地板定位演算法 68 4.3.1單點靜態定位 68 4.3.2多點靜態定位 69 4.3.3單點連續性移動定位 70 4.3.4多點連續性移動追蹤定位 71 4.3.5整體性定位演算法模型 72 4.4定位性能實驗與結果評估 75 4.4.1單點靜態定位實驗 75 4.4.2多點靜態定位實驗 76 4.4.3單點連續性移動定位 78 4.4.4多點連續性移動追蹤定位 79 4.4.5結果與討論 81 4.5校正演算法發展與實驗驗證 82 4.5.1誤差原因探討 82 4.5.2校正演算法發展 83 4.5.3實驗驗證 84 4.6智慧生活之情境應用 86 4.6.1全向輪移動載具定位與路徑追蹤之應用 86 4.6.2不規則物體之重心量測 87 4.7整合Wiimote 2D定位系統之情境實驗應用 89 4.7.1行經遮蔽區域情境 89 4.7.2行經於斜坡區域情境 90 4.8本章結論 92 第五章 四軸飛行載具之系統建立 95 5.1本章介紹 95 5.2四軸飛行載具發展動機與目標 98 5.3四軸飛行載具之建立 101 5.3.1硬體介紹 101 5.3.2四軸飛行載具之架構 104 5.4四軸飛行載具之校正 107 5.4.1開源軟體介紹 107 5.4.2飛控板硬體校正 108 5.5四軸飛行載具之延伸應用探討 110 5.6人機介面之發展 113 5.6.1 LabVIEW人機介面之建立 113 5.6.2 操作面板之功能展示 115 5.7本章結論 117 第六章 四軸飛行載具於Wiimote 3D定位系統發展 119 6.1本章介紹 119 6.2四軸飛行載具與Wiimote 3D定位系統之整合實現 121 6.2.1硬體整合 121 6.2.2系統控制程式流程整合 124 6.3四軸飛行載具之性能狀態探討 127 6.4四軸飛行載具之Wiimote 3D定位展示 132 6.5本章結論 136 第七章 室內Wiimote 3D定位環境之定位實驗 139 7.1本章介紹 139 7.2室內Wiimote 3D室內環境實現 142 7.2.1可控式IR LED陣列之介紹 142 7.2.2 Wiimote 3D定位環境建立 144 7.3實驗系統建立 146 7.3.1全向輪移動載具之運動定位實驗 146 7.3.2四軸飛行載具之運動定位實驗 148 7.4全向輪運動控制定位實驗結果與討論 150 7.5四軸飛行載具運動定位實驗結果與討論 155 7.6本章結論 158 第八章 群體移動載具之整合實驗 161 8.1本章介紹 161 8.2實驗系統建立 163 8.2.1全向輪軌跡追蹤靜態四軸飛行載具 163 8.2.2全向輪軌跡追蹤動態四軸飛行載具 165 8.3實驗結果與討論 167 8.4整體實驗結果延伸探討 173 8.5本章結論 176 第九章 研究結果與討論 177 9.1全文歸納與本章介紹 177 9.2全文討論 179 9.3未來工作與挑戰 185 第十章 結論與未來展望 189 10.1全文結論 189 10.2本文貢獻 190 10.3全文展望與未來工作 192 參考文獻 195 附錄A實驗硬體設備 204 附錄A1力規與放大器 204 附錄A2六階低通濾波器 205 附錄A3多功能資料擷取器 206 附錄B智慧地板定位演算法之推導 207 附錄B1單點靜態定位 207 附錄B2多點靜態定位 209 附錄B3單點連續性移動定位 212 附錄B4多點連續性移動追蹤定位 215 附錄B5整體性定位演算法模型 218 附錄C四軸飛行載具之硬體設備 220 附錄C1 Pixhawk飛控板 220 附錄C2機架 221 附錄C3無刷馬達 223 附錄C4電子變速器 226 附錄C5鋰聚電池(Li-Po Battery) 227 附錄C6電源模組與降壓器 228 附錄C7 RC遙控器及接收器 229 附錄C8 PPM編碼器 230 附錄D可控式IR LED陣列之電路圖 231 附錄E IR333-A 紅外線LED之詳細規格表 233

    參考文獻
    [1] TOYOTA Inc., https://en.wikipedia.org/wiki/Toyota_Partner_Robot
    [2] Roomba機器人, http://www.irobot.com/
    [3] Bender Robotics, Ltd., http://www.advee.eu
    [4] Association for Unmanned Vehicle Systems International (AUVSI), http://www.auvsi.org/home
    [5] Amazon Prime Air, http://www.amazon.com/b?node=8037720011
    [6] Federal Aviation Administration (FAA), http://www.faa.gov/
    [7] Parrot AR Drone2.0, http://www.parrot.com/zh-hk/products/ardrone-2/
    [8] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, "Towards a swarm of agile micro quadrotors," Autonomous Robots, vol. 35, pp. 287-300, 2013.
    [9] X. Chen, L. Xie, C. Wang, and S. Lu, "Adaptive accurate indoor-localization using passive RFID," in Parallel and Distributed Systems (ICPADS), 2013 International Conference on, 2013, pp. 249-256.
    [10] X. Zheng, G. Bao, R. Fu, and K. Pahlavan, "The performance of simulated annealing algorithms for wi-fi localization using google indoor map," in Vehicular Technology Conference (VTC Fall), 2012 IEEE, 2012, pp. 1-5.
    [11] Y. Fukuju, M. Minami, H. Morikawa, and T. Aoyama, "DOLPHIN: An Autonomous Indoor Positioning System in Ubiquitous Computing Environment," in WSTFEUS, 2003, pp. 53-56.
    [12] A. Schmidt, M. Strohbach, K. Van Laerhoven, and G. Hans-W, "Ubiquitous interaction—using surfaces in everyday environments as pointing devices," in ERCIM Workshop on User Interfaces for All, 2002, pp. 263-279.
    [13] J. Kemper and H. Linde, "Challenges of passive infrared indoor localization," in Positioning, Navigation and Communication, 2008. WPNC 2008. 5th Workshop on, 2008, pp. 63-70.
    [14] HaGiSonic Co., Ltd., http://hagisonic.com/
    [15] 陳柏維, Wiimote 紅外線室內定位技術與運動控制應用於機器建築與 智慧生活之研究, 國立成功大學奈米科技暨微系統工程系碩士論文, 2010.
    [16] P. W. Chen, K. S. Ou, and K. S. Chen, “IR Indoor Localization and Wireless Transmission for Motion Control in Smart Building Applications based on Wiimote Technology,” Proceedings of SICE Annual Conference 2010, pp. 1781-1785, Taipei, Taiwan, August 2010.
    [17] B. W. Chen, D. Gu, K. S. Ou, and K. S. Chen, “IR Indoor Localization and Motion Control in Smart Living Space Applications Based on Wiimote Technology: A Preliminary Demonstration,” Journal of the Chinese Society of Mechanical Engineers, vol. 35, no. 3, pp. 187-196, 2014.
    [18] 顧迪, 發展Wiimote室內定位技術與全向移動載具軌跡追蹤控制器與 其於智慧生活之應用, 國立成功大學機械工程學系碩士論文, 2011.
    [19] D. Gu and K. S. Chen, “Design and Performance Evaluation of Wiimote- Based Two-Dimensional Indoor Localization Systems for Indoor Mobile Robot Control,”Measurement: Journal of the International Measurement Confederation, vol. 66, pp. 95-108, April 2015.
    [20] 陳名薪, 發展機器人導航方法及群體操控技術與其在智慧生活之應用, 國立成功大學機械工程學系碩士論文, 2012.
    [21] M. H. Chen, Y. T. Fu, K. S. Ou, and K. S. Chen, “Development of Navigation Schemes for Grouped Mobile Robots Leading to Biomimetic Applications,” International Journal of Automation and Smart Technology, vol. 2, no. 1, pp. 29-41, 2012.
    [22] 傅育德, 結合Wiimote感測於室內移動載具之技術發展與應用:移動定 位、路徑演算、及人機整合, 國立成功大學機械工程學系碩士論文, 2013.
    [23] Y. T. Fu and K. S. Chen, “A Novel Indoor Localization Scheme by Integrating Wiimote Sensing and A Controllable IR-LED Array,” Mechatronics 2013: Recent Technological and Scientific Advances, pp. 567- 574, Springer, 2013.
    [24] 李庭豪, Wiimote 3D定位系統之發展與其在室內移動機器人之姿態追 蹤應用, 國立成功大學機械工程學系碩士論文, 2015
    [25]詹惠媛, 結合多組Wiimotes感測於3D定位系統之發展與應用, 科技部 補助大專學生研究計畫研究成果報告, 2017.
    [26] 畢家興, 蔡怡芳, 歐廣順, 陳國聲, "應變式一維觸控定位系統設計分析 與實驗研究," 中華民國力學學會第三十四屆力學會議, 2010
    [27] 吳名烽, 以力規發展智慧地板及其室內定位之應用,國立成功大學機械 工程學系碩士論文, 2012.
    [28] 王晢, 基於動態規劃法之機器人室內智慧環境路徑規劃研究, 國立成 功大學機械工程學系碩士論文, 2014.
    [29] 陳昱丞, 群組機器人仿生路徑規劃之模擬分析與實驗研究, 科技部補 助大專學生研究計畫研究成果報告, 2015.
    [30] R. C. Luo, K. Y. Chen, and M. Hsiao, "Visual simultaneous localization and mapping using stereo vision with human body elimination for service robotics," in 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2012, pp. 244-249.
    [31] J. Aranda, A. Grau, and J. Climent, "Control architecture for a three- wheeled roller robot," in Advanced Motion Control, 1998. AMC'98- Coimbra., 1998 5th International Workshop on, 1998, pp. 518-523.
    [32] 吳建中, 莊杉良, "智慧生活空間系統可監控居家環境的機器人," Conference on Information Technology and Applications in Outlying Islands, 2009.
    [33] Smart Living Haping The Future, 教育部智慧生活整合性人才培育計畫, http://www.smartliving.org.tw/
    [34] S. Vicini, S. Bellini, and A. Sanna, "The city of the future living lab," International Journal of Automation and Smart Technology, vol. 2, pp. 201- 208, 2012.
    [35] A. A. Karpov, A. Lale, and A. L. Ronzhin, "Multimodal assistive systems for a smart living environment," Trudy SPIIRAN, vol. 19, pp. 48-64, 2011.
    [36] M.-W. Feng, S.-L. Wen, K.-C. Tsai, Y.-C. Liu, and H.-R. Lai, "Wireless sensor network and sensor fusion technology for ubiquitous smart living space applications," in Universal Communication, 2008. ISUC'08. Second International Symposium on, 2008, pp. 295-302.
    [37] Y.-H. Seo, S.-S. Kwak, and T.-K. Yang, "Mobile robot control using smart phone and its performance evaluation," in Advanced Communication and Networking, ed: Springer, 2011, pp. 362-369.
    [38] K. Masuda, T. Horiguchi, K. Ookomori, H. Watanabe, K. Ozawa, T. Yoshinaga, and Y. Aoki, "Development of graphical user interface to control remote probe by reflecting contact force on body surface for tele- echography system," in 4th European Conference of the International Federation for Medical and Biological Engineering, 2009, pp. 927-931.
    [39] 橘色科技, http://conf.ncku.edu.tw/icot2013/ot.html
    [40] 台灣大學智慧生活科技整合與創新研究中心, http://insight.ntu.edu.tw/
    [41] Eco-City健康樂活城, http://www.ecocity.com.tw
    [42] 成功大學人本智慧生活科技整合中心, http://touch.ncku.edu.tw/
    [43] 陳柏維, 歐廣順, 林韋澄, 陳國聲, "Wiimote紅外線室內定位技術與運 動控制應用於智慧建築之研究," 中國機械工程學會第二十六屆全國 學術研討會論文集, 成功大學, 2009.
    [44] C. Kee, D. Yun, and H. Jun, "Precise calibration method of pseudolite positions in indoor navigation systems," Computers & Mathematics with Applications, vol. 46, pp. 1711-1724, 2003.
    [45] H. M. Khoury and V. R. Kamat, "Evaluation of position tracking technologies for user localization in indoor construction environments," Automation in Construction, vol. 18, pp. 444-457, 2009.
    [46] G. Tan, M. Lu, F. Jiang, K. Chen, X. Huang, and J. Wu, "Bumping: A bump- aided inertial navigation method for indoor vehicles using smartphones," IEEE Transactions on Parallel and Distributed Systems, vol. 25, pp. 1670- 1680, 2014.
    [47] J. C. Prieto, A. R. Jiménez, J. I. Guevara, J. L. Ealo, F. A. Seco, J. O. Roa, and A. D. Koutsou, "Robust regression applied to ultrasound location systems," in 2008 IEEE/ION Position, Location and Navigation Symposium, 2008, pp. 671-678.
    [48] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The cricket location- support system," in Proceedings of the 6th annual international conference on Mobile computing and networking, 2000, pp. 32-43.
    [49] M. Valtonen, T. Vuorela, L. Kaila, and J. Vanhala, "Capacitive indoor positioning and contact sensing for activity recognition in smart homes," Journal of Ambient Intelligence and Smart Environments, vol. 4, pp. 305- 334, 2012.
    [50] A. Schmidt, M. Strohbach, K. Van Laerhoven, and G. Hans-W, "Ubiquitous interaction—using surfaces in everyday environments as pointing devices," in ERCIM Workshop on User Interfaces for All, 2002, pp. 263-279.
    [51] F. Yu, M. Jiang, J. Liang, X. Qin, M. Hu, T. Peng, and X. Hu, "An indoor localization of WiFi based on branch-bound algorithm," in Information Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference on, 2014, pp. 1306-1308.
    [52] K. Bu, X. Liu, J. Li, and B. Xiao, "Less is more: efficient RFID-based 3D localization," in 2013 IEEE 10th International Conference on Mobile Ad- Hoc and Sensor Systems, 2013, pp. 86-94.
    [53] F. Tlili, N. Hamdi, and A. Belghith, "Accurate 3D localization scheme based on active RFID tags for indoor environment," in RFID-Technologies and Applications (RFID-TA), 2012 IEEE International Conference on, 2012, pp. 378- 382.
    [54] R. C. Luo, K. Y. Chen, and M. Hsiao, "Visual simultaneous localization and mapping using stereo vision with human body elimination for service robotics," in 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2012, pp. 244-249.
    [55] Y. Zou, W. Chen, X. Wu, and Z. Liu, "Indoor localization and 3D scene reconstruction for mobile robots using the Microsoft Kinect sensor," in IEEE 10th International Conference on Industrial Informatics, 2012, pp. 1182-1187.
    [56] Omni wheel, http://en.wikipedia.org/wiki/Omni_wheel
    [57] J. Aranda, A. Grau, and J. Climent, "Control architecture for a three- wheeled roller robot," in Advanced Motion Control, 1998. AMC'98- Coimbra., 1998 5th International Workshop on, 1998, pp. 518-523.
    [58] K.-S. Byun, S.-J. Kim, and J.-B. Song, "Design of a four-wheeled omnidirectional mobile robot with variable wheel arrangement mechanism," in Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, pp. 720-725.
    [59] T. Isoda, P. Chen, T. Toyota, and T. Hirano, "Omni-directional Mobile Robot for autonomic offroad running," in Robot and Human Communication, 1997. RO- MAN'97. Proceedings., 6th IEEE International Workshop on, 1997, pp. 64-69.
    [60] J. H. Lee, S. Yuta, E. Koyanagi, and B.-J. Yi, "Command system and motion control for caster-type omni-directional mobile robot," in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 1862-1868.
    [61] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, "Feedback control of an omnidirectional autonomous platform for mobile service robots," Journal of Intelligent and Robotic Systems, vol. 22, pp. 315- 330, 1998.
    [62] Y. Leow, K. H. Low, and W. Loh, "Kinematic modelling and analysis of mobile robots with omni-directional wheels," in Control, Automation, Robotics and Vision, 2002. ICARCV 2002. 7th International Conference on, 2002, pp. 820-825.
    [63] R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, "Dynamic model with slip for wheeled omnidirectional robots," IEEE transactions on Robotics and Automation, vol. 18, pp. 285-293, 2002.
    [64] I. Paromtchik, H. Asama, T. Fujii, and L. Endo, "A control system for an omnidirectional mobile robot," in Control Applications, 1999. Proceedings of the 1999 IEEE International Conference on, 1999, pp. 1123-1128.
    [65] Y. Liu, X. Wu, J. J. Zhu, and J. Lew, "Omni-directional mobile robot controller design by trajectory linearization," dynamics, vol. 2, pp. 2-2, 2003.
    [66] J. Vazquez and M. Velasco-Villa, "Computed-torque control of an omnidirectional mobile robot," in Electrical and Electronics Engineering, 2007. ICEEE 2007. 4th International Conference on, 2007, pp. 274-277.
    [67] 翁義清, 全向移動機器人之路徑追蹤, 國立成功大學工程科學系碩士 論文, 2007.
    [68] L. Jayatilleke and N. Zhang, "Landmark-based localization for unmanned aerial vehicles," in Systems Conference (SysCon), 2013 IEEE International, 2013, pp. 448-451.
    [69] O. De Silva, G. K. Mann, and R. G. Gosine, "Development of a relative localization scheme for ground-aerial multi-robot systems," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 870-875.
    [70] M. A. Ma'sum, G. Jati, M. K. Arrofi, A. Wibowo, P. Mursanto, and W. Jatmiko, "Autonomous quadcopter swarm robots for object localization and tracking," in Micro-NanoMechatronics and Human Science (MHS), 2013 International Symposium on, 2013, pp. 1-6.
    [71] D. Iwakura and K. Nonami, "Indoor localization of flying robot by means of infrared sensors," J. Robot. Mechatron, vol. 25, pp. 201-210, 2013.
    [72] J. Eckert, R. German, and F. Dressler, "An indoor localization framework for four- rotor flying robots using low-power sensor nodes," IEEE Transactions on Instrumentation and Measurement, vol. 60, pp. 336-344, 2011.
    [73] J. C. Lee, "Hacking the nintendo wii remote," IEEE pervasive computing, vol. 7, pp. 39-45, 2008.
    [74] J. Lourenço, "Wii3D: Extending the Nintendo Wii Remote into 3D," Rhodes University Honours Thesis, 2010.
    [75] Open-Source, https://en.wikipedia.org/wiki/Open-source_software
    [76] Parrot Bebop Drone2, http://www.parrot.com/usa/products/bebop2/
    [77] Ardupilot, http://copter.ardupilot.org/ardupilot/index.html
    [78] DIY Drones, http://diydrones.com/
    [79] DroneCode, https://www.dronecode.org/
    [80] Open Source Community, https://opensource.com/tags/open-source- community
    [81] 3D Robotics, https://3dr.com/


    下載圖示 校內:2020-08-31公開
    校外:2020-09-01公開
    QR CODE