簡易檢索 / 詳目顯示

研究生: 謝文翰
Hsieh, Wen-Han
論文名稱: 溶膠-凝膠法合成之α-Fe2O3奈米粒子應用於晶片型氣體感測器之檢測
Sol - gel synthesis of α-Fe2O3 nanoparticles applied to the detection of the chip-base gas sensor
指導教授: 莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 氣體感測器α-Fe2O3奈米粒子MEMS技術Sol-Gel
外文關鍵詞: gas sensor, α-Fe2O3 nanoparticles, MEMS technology, Sol-Gel
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了防止人類受到有毒氣體的傷害並保護環境,有毒氣體的檢測變得越來越重要。作為多年來一直被認為是有效的感測材料氧化物之一的半導體金屬也已被廣泛研究。
    本研究中一開始先利用微機電系統(MEMS)技術在六吋矽晶圓上首先在濕氧下生長出低應力的介電層,並以沉積方式製作出金屬指叉狀感測電極與微加熱器,最後使用ICP-RIE在元件背面蝕刻出懸空結構。接著,我們在微加熱器上施加電壓,之後再以熱顯像儀觀察溫度的增益變化,以便在不同溫度設定下進行接下來的量測實驗。在感測材料的合成部分,我們利用sol-gel法合成出α-Fe2O3奈米粒子,比較在不同退火溫度下的薄膜有何差異特性,結果顯示隨退火溫度升高晶粒尺寸也隨之變大。在400°C下退火一個小時,其α-Fe2O3感測層表面可獲得較多孔洞且擁有高表面積,有利於氣體的吸附。最後,在量測方面,先在大氣下做阻值的穩定化的動作,以確保元件在後續量測中所得出的結果是建立在穩定的基準層面之上。在各種氣體比較下,發現α-Fe2O3奈米薄膜對於NOx的存在有較優秀的響應值與較快的響應/恢復時間。而在工作溫度200°C及濃度50 ppb的NO環境下,其最大的響應值為48%,且具備可再現性,並擁有53.54%的穩定性。

    To prevent human beings from being harmed by toxic gases and to protect the environment, the detection of toxic gases becomes increasingly important. Therefore, the environmentally-friendly materials such as semiconductor metal oxides, have been considered as effective sensing materials for many years and have been extensively studied.
    First, a micro-electromechanical system (MEMS) technology was used to grow a low-stress dielectric layer under wet oxygen on a six-inch silicon wafer, and to deposit metal afterward to fabricate interdigital sensing electrodes and micro heating element. Finally, inductively-coupled reactive ion etching (ICP RIE) was used to etch the backside of the device to render a suspended structure. Before carrying out the measurement, a voltage was applied to the microheater to increase the temperature while a thermal imager was used to monitor the temperature change. To prepare the sensing material, the sol-gel method was adopted to synthesize α-Fe2O3 nanoparticles and the variations in the characteristics of the films prepared at different annealing temperatures were assessed. The result showed that the grain size increases with the annealing temperature. Specifically, conducting the annealing at 400 °C for an hour would yield the α- Fe2O3 sensing film surface with more porous holes and a higher surface area layer, which is conducive for gas adsorption.
    Finally, before initiating the measurement task, the initial resistance value should be stabilized first in the atmosphere to ensure the subsequent gas sensing readings are gathered on a reliable basis. With various gases sensed and duly compared, it is found that NOx appears to have a better sensing response and faster response/recovery times for α- Fe2O3 nano-films while subjecting the sensor to NO with a concentration of 50 ppb at operating temperature 200°C would show that a maximum response of 48%, reliable reproducibility, and stability of 53.54%.

    中文摘要 I 英文摘要 II 誌謝 XVII 目錄 XIX 圖目錄 XXIII 第三章 XXIII 第四章 XXIV 第五章 XXV 表目錄 XXIX 第一章 緒論 1 1-1半導體型氣體感測器的現況 1 1-2芯片式感測器之發展概況 2 1-3研究動機與目的 3 第二章 理論基礎與文獻回顧 5 2-1氣體感測器種類介紹 5 2-1-1熱導式氣體感測器(Thermal Conductivity Gas Sensor) 6 2-1-2電化學氣體感測器(Liquid Electrolyte Gas Sensor) 6 2-1-3紅外線氣體感測器(Infrared Gas Sensor) 7 2-1-4觸媒燃燒式氣體感測器(Catalytic Combustion Gas Sensor) 8 2-1-5半導體型氣體感測器(Metal Oxide Semiconductor Gas Sensor) 9 2-2氣體感測器的感測機制 11 2-2-1氣體感測器的感測原理 11 2-2-2氧空缺理論(oxygen vacancy model) 16 2-2-3氧離子吸附理論(Oxygen ionosorption model) 19 2-2-4 表面n型與p型之間轉換的過渡行為 24 2-2-5串接微晶理論 25 2-3影響量測數值的環境因素 28 2-4評估氣體感測器性能的指標 29 2-5三氧化二鐵(Fe2O3)介紹 30 2-5-1 α-Fe2O3材料介紹 30 第三章 元件設計與製作 32 3-1實驗機台與相關機制簡介 32 3-1-1濕式蝕刻清洗系統(Wet bench) 32 3-1-2高溫及低壓爐管(Horizontal Furnace) 33 3-1-3光罩對準曝光系統(Mask aligner) 34 3-1-4電子槍蒸鍍系統(Electron beam evaporation) 35 3-1-5射頻濺鍍機(RF Sputter) 37 3-1-6電漿輔助式化學氣相沈積&活性離子蝕刻系統(PECVD & ICP) 39 3-1-7氣體感測器量測系統(Gas measurement system) 41 3-2氣體感測器元件製程步驟 43 第四章 α-Fe₂O₃薄膜配置與分析 51 4-1氧化鐵溶液配置流程介紹 51 4-2 α-Fe₂O₃薄膜相關材料特性分析 58 4-2-1 X光繞射儀(X-ray diffractometer) 58 4-2-2化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis) 65 4-2-3高解析場發射掃描穿透式電子顯微鏡(Field Emission Gun Transmission Electron Microscope) 68 4-2-4高解析掃描式電子顯微鏡(High Resolution Scanning Electron Microscope) 71 第五章 結果與討論 74 5-1 α-Fe2O3氣體感測器元件測試 74 5-2 OM圖與光罩結構 74 5-2-1 大氣下電阻值之穩定度 75 5-2-2 相對溼度對感測器電阻值之影響 77 5-2-3 微型加熱電極的測試 78 5-3 α-Fe2O3氣體感測器在不同氣體下的量測 80 5-3-1 α-Fe2O3氣體感測器在一氧化氮(NO)下之量測結果 82 5-3-2 α-Fe2O3氣體感測器在二氧化氮(NO2)下之量測結果 93 5-3-3 α-Fe2O3對於氮氧化物(NOx)氣體的分辨 99 5-3-4 α-Fe2O3氣體感測器在一氧化碳(CO)下之量測結果 100 5-3-5 α-Fe2O3氣體感測器在氨氣(NH3)下之量測結果 107 5-4 α-Fe2O3氣體感測器在低濃度一氧化氮中的穩定度測試 111 5-5在高溫下電流反向之行為 113 第六章 結論與未來工作 118 6-1結論 118 6-2未來展望 121 參考文獻 122

    [1] A. Tricoli, M. Righettoni, A. Teleki Semiconductor gas sensors: dry synthesis and applications Angewandte Chemie International Edition, 49 (2010), pp. 7632-7659
    [2] G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions Metal oxide semiconductor gas sensors in environmental monitoring Sensors, 10 (2010), pp. 5469-5502
    [3] G. Korotcenkov, B.K. Cho Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) Sensors and Actuators B, 156 (2011), pp. 527-538
    [4] Y. Hu, P.H. Yeh, Z. Li, T.Y. Wei, Z.L. Wang Supersensitive, fast-response nanowire sensors by using Schottky contacts Advanced Materials, 22 (2010), pp. 2327-2332
    [5] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant Semiconducting metal oxides as sensors for environmentally hazardous gases Sensors and Actuators B, 160 (2011), pp. 580-591
    [6] M.E. Franke, T.J. Koplin, U. Simon Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter Small, 2 (2006), pp. 36-50
    [7] Hsueh, Ting-Jen, Chien-Hua Peng, and Wei-Shou Chen. "A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater." Sensors and Actuators B: Chemical 304 (2020)
    [8] S.-P. Chang, K.-Y. Chen, "UV illumination room-temperature ZnO nanoparticle ethanol gas sensors", Int. Scholarly Res. Netw., vol. 2012, Feb. 2012.
    [9] C.-H. Lin, S.-J. Chang, T.-J. Hsueh," A WO3 nanoparticles NO gas sensor prepared by hot-wire CVD ", IEEE Electron Device Lett., vol. 38, no. 2, pp. 266-269, Feb. 2017.
    [10] Navale, S. T., et al."Room temperature NO2 gas sensor based on PPy/α- Fe2O3 hybrid nanocomposites." Ceramics International 40.6 (2014): 8013-8020.
    [11] Hotovy, I., et al. "Sensing characteristics of NiO thin films as NO2 gas sensor." Thin Solid Films 418.1 (2002): 9-15.
    [12] Li, Yueming, et al. "CuO particles and plates: synthesis and gas-sensor application." Materials Research Bulletin 43.8-9 (2008): 2380-2385.
    [13] Patil, D. R., L. A. Pati,and P. P. Patil."Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature." Sensors and Actuators B: Chemical 126.2 (2007): 368-374.
    [14] Wen, Zhen, et al. "Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor." Sensors and Actuators B: Chemical 186 (2013): 172-179.
    [15] Kortidis, Ioannis, et al. "Characteristics of point defects on the room temperature ferromagnetic and highly NO2 selectivity gas sensing of p-type Mn3O4 nanorods." Sensors and Actuators B: Chemical 285 (2019): 92-107.
    [16] Cabot, A., et al. "Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors." Sensors and Actuators B: Chemical 70.1-3 (2000): 87-100.
    [17] Belmonte, J. Cerda, et al. "Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2." Sensors and Actuators B: Chemical 114.2 (2006): 881-892.
    [18] Semi Media Edit. " SEMI: The sensor market is rising. "November 8, 2019 Posted on MarketWatch.
    [19] T.L. Guidotti The higher oxides of nitrogen: inhalation toxicology Environ. Res., 15 (1978), pp. 443-472
    [20] N.L.R. Han, J.S. Ye, A.C.H. Yu, F.S. Sheu Differential mechanisms underlying the modulation of delayed-rectifier K+ channel in mouse neocortical neurons by nitric oxide Journal of Neurophysiology, 95 (2006), pp. 2167-2178
    [21] Ratnawati, J. Morton, R.L. Henry, P.S. Thomas Exhaled breath condensate nitrite/nitrate and pH in relation to pediatric asthma control and exhaled nitric oxide Pediatric Pulmonology, 41 (2006), pp. 929-936
    [22] Delen, Frank M., et al. "Increased exhaled nitric oxide in chronic bronchitis." Chest 117.3 (2000): 695-701.
    [23] 蔡嬪嬪,曾明漢,氣體感測器之簡介,應用市場,材料與社會,68期pp.50-61,1992
    [24] K. Ihokura, J. Watson, “The stannic oxide gas sensor : principles and applications.”
    [25] 奈米半導體材料之特殊氣體感測性質,林鴻明,曾世杰,工業材料, 157期,pp.163-169,2000
    [26] Gas sensors: Principle, operation and developments, edited by G. Sberveglieri Kluwer Academic Publishers, Netherlands p. 89-186 , 1992
    [27] 感測器原理與應用技術, 賴昇, 小林哲二, 全華(1986)144-153
    [28] M. Chelvayohan, Patented Virtual Reference TM Infrared Gas Sensor, Sensor design engineer Texas Instruments, Inc. 1999.
    [29] Stetter, Joseph R., William R. Penrose, and Sheng Yao. "Sensors, chemical sensors, electrochemical sensors, and ECS." Journal of The Electrochemical Society 150.2 (2003): S11.
    [30] GASTEC CORPORATION "Catalytic combustion sensors"
    [31] Dey, Ananya. "Semiconductor metal oxide gas sensors: A review." Materials Science and Engineering: B 229 (2018): 206-217.
    [32] Wetchakun, K., et al. "Semiconducting metal oxides as sensors for environmentally hazardous gases." Sensors and Actuators B: Chemical 160.1 (2011): 580-591.
    [33] Shankar, Prabakaran, and John Bosco Balaguru Rayappan. "Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review." Sci. Lett. J 4.4 (2015): 126.
    [34] H.J. Song, X.H. Jia, H. Qi, X.F. Yang, H. Tang, C.Y. MinFlexible morphology-controlled synthesis of monodisperse α-Fe¬2O3 hierarchical hollow microspheres and their gas-sensing properties J. Mater. Chem., 22 (2012), p. 3508.
    [35] Y.J. Chen, C.L. Zhu, L.J. Wang, P. Gao, M.S. Cao, X.L. ShiSynthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core–shell nanorods Nanotechnology, 20 (2009), p. 045502
    [36] H. Ogawan, M. Nishikawa, and A. Abe, J. Appl. Phys. 53(1982) 4448
    [37] Xu, Qi, et al. "Improving the triethylamine sensing performance based on debye length: A case study on α-Fe2O3@ NiO (CuO) core-shell nanorods sensor working at near room-temperature." Sensors and Actuators B: Chemical 245 (2017): 375-385.
    [38] R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys., vol. 53, no. 3, pp. 143–167, 2014.
    [39] A. Gurlo, N. Bârsan, A. Oprea, M.Sahm, T. Sahm, and U. Weimar, “An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2280– 2282, 2004.
    [40] Oprea, A., et al. "Conduction model of SnO2 thin films based on conductance and Hall effect measurements." Journal of applied physics 100.3 (2006): 033716.
    [41] F. H. Ramirez, J. D. Prades, A. Tarancon, S. Barth, O. Casals, R. J. Diaz, E. Pellicer, J. Rodriguez, J. R. Morante, M. A. Juli, S. Mathur, and A. R. Rodriguez, “Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires,” Adv. Funct. Mater., vol. 18, no. 19, pp. 2990–2994, 2008.
    [42] B. Kamp, R. Merkle, and J. Maier, “Chemical diffusion of oxygen in tin dioxide,” Sensors Actuators B Chem., vol. 77, no. 1–2, pp. 534– 542, 2001.
    [43] O. Safonova, I. Bezverkhy, P. Fabrichnyi, M. Rumyantseva, and A. Gaskov, “Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements,” J. Mater. Chem., vol. 12, no. 4, pp. 1174–1178, 2002.
    [44] F. Morazzoni, C. Canevali, N. Chiodini, C. Mari, R. Ruffo, R. Scotti, 105 L. Armelao, E. Tondello, L. E. Depero, and E. Bontempi, “Nanostructured Pt-Doped Tin Oxide Films: Sol−Gel Preparation, Spectroscopic and Electrical Characterization,” Chem. Mater., vol. 13, no. 11, pp. 4355–4361, 2001.
    [45] M. Iwamoto, Y. Yoda, N. Yamazoe, and T. Seiyama, “Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides, ” J. Phys. Chem., vol. 82, no. 24, pp. 2564–2570, 1978.
    [46] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interactions of tin oxide surface with O2, H2O and H2, ” Surf. Sci., vol. 86, no. C, pp. 335–344, 1979.
    [47] N. Barsan, M. Schweizer-Berberich, and W. Göpel, “Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report,” Fresenius. J. Anal. Chem., vol. 365, no. 4, pp. 287– 304, 1999.
    [48] H.J. Kim, J.H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors : Overview," Sensors and Actuators B , vol.192 , pp.607– 627 , 2014
    [49] S.M. Sze: Semiconductor sensors, John Wiley and Sons, (1994) 387-393
    [50] Gurlo, A., et al. "A p-to n-transition on α- Fe2O3-based thick film sensors studied by conductance and work function change measurements." Sensors and Actuators B: Chemical 102.2 (2004): 291-298.
    [51] Lee, Yu‐Chen, et al. "p‐Type α‐ Fe2O3 Nanowires and their n‐Type Transition in a Reductive Ambient." small 3.8 (2007): 1356-1361.
    [52] Hao, Quanyi, et al. "Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S." Materials Science and Engineering: B 176.7 (2011): 600-605.
    [53] Dai, Zhengfei, et al. "Highly reversible switching from P-to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram." Journal of Materials Chemistry A 3.7 (2015): 3372-3381.
    [54] Wu, Jyh Ming. "A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires." Nanotechnology 21.23 (2010): 235501.
    [55] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements, " Sensors and Actuators B , vol. 3 , pp.147-155 , 1991
    [56] N. Barsan, M. Schweizer-Berberich and W. Göpel, "Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: astatus report," Fresenius Journal of Analytical Chemistry , vol. 365 , pp.287-304 , 1999
    [57] V.E. Bochenkov, G.B. SergeevMetal oxide nanostructures and their application A. Umar, Y.B. Hahn (Eds.), Metal Oxide Nanoparticles and Their Applications, American Scientific Publication (2010), pp. 31-52
    [58] Srinivasan, Parthasarathy, D. Prakalya, and B. G. Jeyaprakash. "UV-activated ZnO/CdO nn isotype heterostructure as breath sensor." Journal of Alloys and Compounds 819 (2020): 152985.
    [59] Sears, W. M. "The effect of oxygen stoichiometry on the humidity sensing characteristics of bismuth iron molybdate." Sensors and Actuators B: Chemical 67.1-2 (2000): 161-172.
    [60] Machala, Libor, Jirí Tucek, and Radek Zboril. "Polymorphous transformations of nanometric iron (III) oxide: a review." Chemistry of Materials 23.14 (2011): 3255-3272.
    [61] Yamashita, Toru, and Peter Hayes. "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials." Applied surface science 254.8 (2008): 2441-2449.
    [62] Pailhé, Nathalie, et al. "Impact of structural features on pigment properties of α-Fe2O3 haematite." Journal of Solid State Chemistry 181.10 (2008): 2697-2704.
    [63] Boudjemaa,A.,etal."Physicaland photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production." International Journal of Hydrogen Energy 34.10 (2009): 4268-4274.
    [64] Prucek, Robert, Martin Hermanek, and Radek Zbořil. "An effect of iron (III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—A competition between homogeneous and heterogeneous catalysis." Applied Catalysis A: General 366.2 (2009): 325-332.
    [65] Rettig, Frank, and Ralf Moos. "α-iron oxide: An intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors." Sensors and Actuators B: Chemical 145.2 (2010): 685-690.
    [66] Machala, Libor, Jirí Tucek, and Radek Zboril. "Polymorphous transformations of nanometric iron (III) oxide: a review." Chemistry of Materials 23.14 (2011): 3255-3272.
    [67] Navale, S. T., et al. "Room temperature NO2 gas sensor based on PPy/α-Fe2O3 hybrid nanocomposites." Ceramics International 40.6 (2014): 8013-8020.
    [68] Afzal, Adeel, et al. "NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives." Sensors and Actuators B: Chemical 171 (2012): 25-42.
    [69] Dai, Zhengfei, et al. "Highly reversible switching from P-to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram." Journal of Materials Chemistry A 3.7 (2015): 3372-3381.

    下載圖示 校內:2025-08-28公開
    校外:2025-08-28公開
    QR CODE