簡易檢索 / 詳目顯示

研究生: 韓宜庭
Han, Yi-Ting
論文名稱: 以實驗及有限元素法探討保護層對積層陶瓷電容機械強度之影響
Investigation of the effects of protective layer on the mechanical strength of multilayer ceramic capacitors by using experiment and finite element methods
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 積層陶瓷電容殘餘壓應力抗彎強度保護層有限元素法
外文關鍵詞: MLCC, residual compressive stress, bending strength, protective layers, finite element method
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層陶瓷電容組裝在電路板及使用時,其介電陶瓷材料主要會受到熱機械力等作用力影響,當內部應力超過陶瓷電容本身能夠承受的機械強度,便會發生微破裂,若裂縫穿過內電極層,將會使絕緣阻抗變小,產生漏電流的短路現象,隨後導致產品功能失效。本研究利用維氏硬度計量測積層陶瓷電容之內部應力分布,並利用在上下層料蓋堆疊鎳保護層,藉由在MLCC元件表面產生足夠之殘留壓縮應力,改善產品可靠度及使用壽命。研究發現藉由在上下層料蓋堆疊鎳保護層,可使接近表面層之裂痕往平行於內電極之方向延展。在上下層料蓋堆疊一層鎳保護層,確實可有效改善產品可靠度及使用壽命。此外,本研究亦運用線性與非線性結構力學分析軟體了解改變MLCC保護層的材料、疊層方法及厚度與殘留應力間的關係。

    When multilayer ceramic capacitors (MLCC) are assembled on a circuit board, the cracks easily occur due to depaneling of the print circuit board, screw fastening, or shock from a vibration or a drop, which may lead to a short circuit failure. In this study, micro-hardness technology is used to measure the internal stress distribution of MLCC, and the stacking of the nickel protective layers on the upper and bottom of MLCC is used to improve the bending strength by generating sufficient residual compressive stress on the surface of MLCC. It has been found that when a nickel protective layer was stacked on the upper and bottom of MLCC, the bending distance to induce a crack near the surface layer can be effectively extended. In addition, linear and nonlinear structural mechanics analysis software was also used to understand the effects of the material, thickness, and lamination method of the protective layer on the distribution of the residual stress in MLCC.

    摘要 I 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 積層陶瓷電容簡介 3 2-2 積層陶瓷電容發生微破裂之原因 6 2-2-1 熱衝擊(Thermal Shock)失效 6 2-2-1 電路板彎曲造成之機械破壞(Board Flex Test) 6 2-3 提升機械強度之方法 8 2-3-1 熱韌化 8 2-3-2 化學強化法 8 2-3-3 利用熱膨脹係數差製造殘留應力 9 2-3-4 利用高硬度陶瓷提升元件強度 10 2-4 殘留應力 10 2-4-1 X-ray繞射測量殘留應力 11 2-4-2 微壓痕測量殘留應力 12 2-5 有限元素法 13 2-5-1 彈性力學之平面問題 13 2-5-2 彈性力學之對稱軸問題 15 2-5-3 平面問題之應變矩陣、應力矩陣 17 2-5-4 熱變形與熱應力計算 21 2-5-5 以有限元素法分析應力於微小元件內部之相關研究 23 第三章 實驗步驟與分析方法 26 3-1 模擬軟體分析 26 3-2 樣品製備 28 3-2-1 粉末製備 28 3-2-2 量測熱膨脹係數之樣品製作 30 3-2-3 薄帶製作 30 3-2-4 MLCC元件製作 30 3-3 性質量測 32 3-3-1 熱膨脹係數量測 32 3-3-2 密度量測 32 3-3-3 顯微結構分析 32 3-3-4 硬度及殘留應力 32 3-3-5 板彎測試 32 3-4 樣品代號 34 3-4-1 BTn-m 34 3-4-2 堆疊添加0.5wt% Ni之BaTiO3薄帶之樣品 34 3-4-3 同向層樣品 34 第四章 ABAQUS模擬結果 36 4-1 不同保護層層數對殘留應力之影響 36 4-2 不同性質之保護層對殘留應力之影響 48 4-3 不同厚度之保護層對殘留應力之影響 50 4-4 改變倒角對應力之影響 51 第五章 實驗結果與討論 54 5-1 不同Ni金屬添加量對BaTiO3材料物理性質之影響 54 5-1-1 熱膨脹係數 54 5-1-2 密度 55 5-1-3 顯微結構 56 5-1-4 硬度及殘留應力(vicker’s) 58 5-2 不同Ni添加量之BaTiO3與BME MLCC生胚共燒之性質影響 60 5-2-1 抗彎強度 60 5-2-1 元件破裂角度 61 5-3 以Ni作為保護層對BME MLCC機械性質之影響 64 5-3-1 硬度及殘留應力 64 5-3-2 抗彎強度 69 5-3-3 元件破裂角度 70 第六章 結論 74 參考文獻 75

    [1] A. Seki and S. Ishitobi, MLCCs Brace up for Strength Requirement of Automotives. AEI pp 26-28, 2013).
    [2] G. de With, Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors, Journal of the European Ceramic Society, 12[5], 323-336, (1993).
    [3] C. W. Huang, B. T. Chen, K. Y. Chen, C. H. Hsueh, W. C. Wei and C. T. Lee, Finite element analysis and design of thermal–mechanical stresses in multilayer ceramic capacitors, International Journal of Applied Ceramic Technology, 12[2], 451-460, (2015).
    [4] AbrisaTechnologies https://abrisatechnologies.com/2014/11/glass-strengthening-methods/
    [5] Corning https://www.corning.com/gorillaglass/worldwide/en/technology/how-it-s-made.html
    [6] W. R. Lanning and C. L. Muhlstein, Strengthening Mechanisms in MLCCs: Residual Stress Versus Crack Tip Shielding, Journal of the American Ceramic Society, 97[1], 283-289, (2014).
    [7] 中野牧人 and 齋藤彰, 疊層陶瓷電容器. CN 101142642A. (2008).
    [8] 胡曉萍 and 鄧文明, 多層片式陶瓷電容器. CN 203013529U. (2013).
    [9] R. C. Pohanka, S. W. Freiman and R. W. Rice, Fracture processes in ferroic materials, Ferroelectrics, 28[1], 337-342, (1980).
    [10] H. Dolle, The influence of multiaxial stress states, stress gradients and elastic anisotropy on the evaluation of (Residual) stresses by X-rays, Journal of Applied Crystallography, 12[6], 489-501, (1979).
    [11] M. R. James and J. B. Cohen. The Measurement of Residual Stresses by X-Ray Diffraction Techniques. In H. Herman (Ed.), Treatise on Materials Science & Technology (Vol. 19, pp. 1-62): Elsevier (1980).
    [12] D. B. Marshall and B. R. Lawn, An indentation technique for measuring stresses in tempered glass surfaces, Journal of the American Ceramic Society, 60[1‐2], 86-87, (1977).
    [13] D. Marshall and B. R. Lawn, Residual stress effects in sharp contact cracking, Journal of Materials Science, 14[8], 2001-2012, (1979).
    [14] G. de With and N. Sweegers, The effect of erosional wear on strength and residual stress during shaping of ceramic multilayer capacitors, Wear, 188[1-2], 142-149, (1995).
    [15] D. B. Marshall, B. R. Lawn and P. Chantikul, Residual-stress effects in sharp contact cracking Part.2 strength degradation., Journal of Materials Science, 14[9], 2225-2235, (1979).
    [16] S. Suresh and A. E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation, Acta Materialia, 46[16], 5755-5767, (1998).
    [17] S. Suresh and A. Giannakopoulos, Method and apparatus for determining preexisting stresses based on indentation or other mechanical probing of a material. 6,155,104. (2000).
    [18] G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS, Journal of the American Ceramic Society, 64[9], 533-538, (1981).
    [19] P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .2. STRENGTH METHOD, Journal of the American Ceramic Society, 64[9], 539-543, (1981).
    [20] K. Y. Zeng and D. Rowcliffe, Experimental-measurement of residual-stress field around a sharp indentation in glass, Journal of the American Ceramic Society, 77[2], 524-530, (1994).
    [21] C. B. Tanaka, H. Harisha, M. Baldassarri, M. S. Wolff, H. Tong, J. B. C. Meira and Y. Zhang, Experimental and finite element study of residual thermal stresses in veneered Y-TZP structures, Ceramics International, 42[7], 9214-9221, (2016).
    [22] K. Kese and D. J. Rowcliffe, Nanoindentation method for measuring residual stress in brittle materials, Journal of the American Ceramic Society, 86[5], 811-816, (2003).
    [23] J. Lu, Handbook of measurement of residual stresses. Fairmont Press, (1996).
    [24] O. Anderoglu, Residual stress measurement using X-ray diffraction. (2019).
    [25] 傅永華, 有限元分析基礎. 武漢大學出版社, (2003).
    [26] G. Yang, Z. Yue, T. Sun, W. Jiang, X. Li and L. Li, Evaluation of residual stress in a multilayer ceramic capacitor and its effect on dielectric behaviors under applied DC bias field, Journal of the American Ceramic Society, 91[3], 887-892, (2008).
    [27] N. Fujikawa, M. Inagaki and N. Yokoe, Simulation and evaluation of stresses in surface mounted chip capacitors, Ceramic Dielectrics: Composition, Processing and Properties. Proc. Symposium on Ceramic Dielectrics Indianapolis, 23-27 April 1989, 292-302, (1989).
    [28] K.-T. Wu, S.-J. Hwang, H.-H. Lee and B.-Y. Lin, Finite element analysis of multi-level interconnection under cyclic thermomechanical loads, Microsystem Technologies, 24[2], 1003-1016, (2018).

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE