簡易檢索 / 詳目顯示

研究生: 張佑嵩
Chang, Yu-Sung
論文名稱: 以光合菌Rhodopseudomonas sphaeroides生質產氫燃料電池系統電能輸出效應之研究
Investigation of power output efficiency from the microbial hydrogen biofuel cell system with the photosynthetic bacteria, Rhodopseudomonas sphaeroides
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 微生物燃料電池Rhodopseudomonas sphaeroidespolypyrrole光合菌電化學阻抗光譜質子交換膜鹽橋碳紙4-(3-pyrrolyl)butyric acid
外文關鍵詞: Rhodopseudomonas sphaeroides, microbial fuel cell, photosynthetic bacteria, polypyrrole, 4-(3-pyrrolyl)butyric acid, carbon paper, salt bridge, proton-exchange membrane, electrochemical impedance spectrum (EIS)
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在能源短缺與環保意識高漲的21世紀中,綠色能源早已不再是陌生的名詞。石油存量即將枯竭,溫室效應正影響著大氣氣候,創新能源的開發是當今熱門的課題。光合細菌擁有利用太陽光的能力,以菌綠素吸收太陽光能,並分解有機物產生一連串的代謝反應電子。菌體膜表面具有hydrogenase可以催化氫離子並生成氫氣。本論文將研究光合菌Rhodopseudomonas sphaeroides在微生物燃料電池模組系統的發展潛力。以碳紙為微生物陽極基材,並以具生物相容性之導電性單體 (pyrrole) 與其單體衍生物 (4-(3-pyrrolyl)butyric acid) 形成導電性共聚高分子以修飾碳紙表面,並固著微生物於電極上。SEM表面觀察與電化學分析儀檢測法可用來比較不同聚合時間對導電性高分子膜厚度的影響及對於微生物燃料電池功率與電流輸出的差異,以聚合時間為3小時之共聚導電性高分子為陽極之微生物燃料電池系統為最佳,鹽橋系統中可達280 mW/m3之最大功率輸出。
    以燃料電池之電流密度與功率密度之效能來判斷材料對系統的影響;亦比較鹽橋系統與質子交換膜系統之效能,並利用極化曲線與交流阻抗分析儀量測燃料電池內阻抗的變化。質子交換膜系統之效能明顯優於鹽橋系統,可有1,800 mW/m3 之最大功率輸出。於電解培養液中添加不同成份的促進劑以探討對電池功率輸出之影響;穩定操作下,微生物燃料電池可達0.6 V 之開環電位;除此之外,在不改變槽體體積下,增加生物陽極之面積至3倍,且在外接280 Ω電阻下可以得到最大功率輸出為2,300 mW/m3。本微生物燃料電池在不受雜菌汙染之下,定期更新培養基與陰極溶液是可以連續長期操作至少2個月。

    In the 21th century, the human beings are aware of environmental consciousness and deficiency of energy, people become to pay great attention to the green energy. To discover an alternative energy resource is under urgent needs since we are about to run out of the petroleum stock. Particularly, green house effect caused by the evolution of carbon dioxide into the atmosphere is changing the climate gradually.
    The photosynthetic bacteria has the ability to capture and utilize the sun light. They use the bacteriochlorophyll to absorb the solar energy while initiating the catabolism of organic compounds to produce electrons during a series of metabolism. The enzyme, hydrogenase, on the surface of bacteria membrane, can catalyze the reaction of hydrogen ions into hydrogen molecules.
    In this work, we investigated the microbial fuel cell (MFC) system with the photosynthetic bacteria, Rhodopseudomonas sphaeroides. Carbon paper modified by the biocompatible material, polypyrrole-co-poly(4-(3-pyrrolyl)butyric acid) (PPy-P43BA), was served as the anode of the MFC system for the immobilization of the microbes. Scanning electron microscopy (SEM) for the observation of the surface morphology of carbon paper together with the electrochemical analysis of the microbial fuel cell was used to compare the influence of polymerization time to the film thickness of the fabricated conducting polymer as well as the power efficiency and current output of the MFC system. Best performance from the MFC system was achieved from the preparation of the conducting copolymer film onto the anode with the electropolymerization time of 3 hours. Via doing so, a maximum power efficiency of 280 mW/m3 could be obtained from the MFC system with a salt bridge for the transportation of ions.
    Power density and current density were used as the index to estimate the influence of materials on the fuel cell systems. Both index can also be used to compare the efficiency of salt bridge system and Nafion® proton-exchange membrane system. The results showed that Nafion® membrane system had superior power density output of 1,800 mW/m3 to the salt bridge system. Cell polarization curves and electrochemical impedance spectrum (EIS) were also applied to estimate the internal resistance of the microbial fuel cell. The influences of power outputs with respect to different designs of the microbial fuel cell systems were studied in this work. Under stable operating conditions, the MFC system could reach an open-circuit potential of 0.6 V. Increasing the bio-anode surface area 3 folds could further enhance the maximum power output to 2,300 mW/m3 with an external resistor of 280 Ω. The MFC system could operate for at least 2 months by refreshing culture medium periodically.

    總目錄 中文摘要…………………………………………...……………………………………...I Abstract……………………………………………………………………………….......II 總目錄…………………………………………………………………...……………... IV 表目錄………………………………………………...………………………………..VII 圖目錄………………………………………………….………….………………….VIII 第一章 緒論…………………………………………………………………...………….1 1.1生質燃料………………………………………………………………………………1 1.2 光合作用 (Photosynthesis) …………………………………….……………………1 1.3 生物燃料電池簡介………………………………………..….………………………2 1.3.1 生物燃料電池特點………………………………..….…………………….………2 1.3.2 光合作用細菌 (Photosynthetic Bacteria) ……..….…………………….…………3 1.4 微生物產氫……………….……………………………………………………..……4 1.5 微生物燃料電池………….…………………………………………………………..6 1.6 菌體選擇……………………………………………………………………..…..….11 1.7電極材料……………………………………………………………………..…...….11 1.7.1導電性高分子 (Conducting polymers) ……………….…………………..…...….11 1.7.2 導電性高分子的誕生……………………………………………………..…..….11 1.7.3 Polypyrrole的電聚合原理和導電原理……………………..…………..…..….12 1.8 微生物燃料電池模組………………………………………………………..…..….14 1.9 Nafion®質子交換膜之簡介…………………………......…………………......….16 1.10 燃料電池效能之檢測………………………………….……………………...….17 1.11 氫氣之收集………………………………………………………………………...17 第二章 實驗方法與材料…………….…………………………………….……….19 2.1 微生物培養………………………………………………………………………….19 2.1.1 基礎培養基………………………………………………………………………19 2.1.2 富集培養基………………………………………………………………………..19 2.1.3 菌體生長曲線…………………………………………………………………......20 2.2 藥品與材料的前處理……………………………………………………………….20 2.2.1 碳紙電極的製備……….……………………………………………………….....20 2.2.2 以FTO平板導電玻璃製備導電性高分子膜…………………………………….20 2.2.3 陽極電極之導電性高分子修飾製備……………………………………………21 2.3 電池放電之性能測試……………………………………………………………….21 2.3.1 含有Nafion® 117質子交換膜之微生物燃料電池之組裝……………………….21 2.3.2 Nafion® 117之微生物燃料電池放電測試系統………………………………….21 2.3.3 極化曲線與powervoltage曲線………………………………………………….21 2.4 電極特性之分析………………………………………………………………...…..25 2.4.1 以掃描式電子顯微鏡 (SEM) 觀察陽極電極表面………………………….…25 2.4.2 交流阻抗分析儀測試陽極電極阻抗……………………………………………..25 2.4.3鹽橋系統與Nafion質子交換膜系統之阻抗分析…………………………...……25 2.5 藥品與材料…………………………………………………………...…………..…26 2.6 儀器設備…………………………………………………………………….....……28 第三章 結果與討論……………………………………………………………......……29 3.1 導電性高分子…………………………………………………………………….…29 3.1.1 導電性高分子表面型態之觀察………………………………………………..…30 3.2 FTO導電玻璃樣本………………………………………………………………..…35 3.2.1 高分子膜導電度………………………………………………………………..…37 3.3 燃料電池效能量測………………………………………………………….………39 3.4 微生物燃料電池放電量測……………………………………………….…………43 3.5 鹽橋系統與Nafion質子交換膜系統之比較………………………………………46 3.5.1 以鹽橋系統測試不同修飾電極……………………………………..……………49 3.5.2不同材料修飾之電極對菌體附生之觀察……………………...…………………51 3.5.3 poly(pyrrole-co-4(3-pyrrolyl)butyric acid)共聚高分子之聚合時間對功率輸出之影響………………………………………………………………………………………51 3.5.4不同碳源對微生物燃料電池功率之觀察……………………...…………………55 3.5.5 質子交換膜系統……………………………………………………..……………58 3.6菌體培養及生長曲線對微生物燃料電池電能輸出之關係……………..…………62 3.6.1 菌體培養及生長曲線……………………………………………..………………62 3.6.2 菌體培養及生長曲線對微生物燃料電池電能輸出之關係…………..…………66 3.7菌體產氫及收集……………………………………………………..………………69 3.8 菌體SEM……………………………………………………………………………70 第四章 結論……………………………………………………………….…………….72 參考文獻…………………………………………………………………………………74 表目錄 表1.4.1 藍藻、藍綠菌與光合菌種類對氫氣產率之比較 [10]…………………………5 表1.4.2 Rhodopseudomonas faecalis strain RLD-53菌株在調控pH值、碳源、氮源與光照強度對氫氣產率的影響 [11]………………………………........……….6 表2.1.1 基礎培養基成分表……………………………………………………….19 表2.1.2.1 富集培養基成分表…………………………………………………………..19 表2.1.2.2 微量元素儲液成分表………………………………………………………..20 表3.1.1 導電性高分子聚合程度對碳纖維骨幹直徑的影響………………………….34 表3.2.1 高分子膜在不同單體配方與聚合環境條件下之電阻值比較……………….37 表3.5.1 Nafion®系統和鹽橋系統之生物燃料電池的比較 [25]……………………..46 表3.5.2 Nafion®系統和鹽橋系統的電池效能比較 [26]……………………………..46 表3.5.5 鹽橋、質子交換膜阻抗分析表………………………………….……………..61 表3.7.1 R. sphaeroides培養瓶內氣體分析…………………………….……………….70 圖目錄 圖1.3.2 光合細菌分類圖 [6]……………………………………………………..……3 圖1.4.1 光合菌利用光能在菌體內傳遞電子並生成氫氣之機制 [10]……………..…5 圖1.5.1 微生物可能的放電機制 [17] ………………………………………….....……8 圖1.5.2 微生物利用色素蛋白與性毛傳遞電子的可能機制 [17] ……………….……9 圖1.5.3 藍綠菌在碳纖維上利用性毛固定之顯微鏡圖 [20] ……………….....……10 圖1.5.4 電解法菌體產氫裝置……………………………………………………...…10 圖1.7.2 導電性高分子摻雜態與非摻雜態於導電度之比較 [27] ……………...……12 圖1.7.3.1 常見的雜環類導電性高分子 [29] …………………………………………13 圖1.7.3.2 Polypyrrole之電聚合反應機構 [28] ………………………………..………13 圖1.8.1 文獻中應用氧氣陰極的例子之ㄧ [17] ……………………………..….……14 圖1.8.2 文獻中應用氧氣陰極的例子之二 [30] ………………..…………….………15 圖1.8.3 雙槽式空氣陰極的應用,改善還原氧氣過電壓過大之問題………...………16 圖 1.9.1.1 Nafion® 質子交換模化學式立體結構示意圖 [33] ……………….………17 圖2.3 微生物燃料電池檢測接線示意圖........................................................…....……23 圖2.3.4 以外接電阻進行微生物燃料電池放電之系統架設………………….....……24 圖3.1.1 導電性高分子之導電度範圍示意圖。圖中箭號向上為摻雜態,向下則為去摻雜態 (dedoped state) [27]..…………………………………………………………...29 圖3.1.1.1 以循環伏安法電聚合導電性高分子……………………………………......30 圖3.1.1.2 空白無疏水處理碳紙與不同聚合圈數之碳紙電極SEM圖 (50,000倍)….31 圖3.1.1.3 空白無疏水處理碳紙與不同聚合圈數之碳紙電極SEM圖 (10,000倍).....32 圖3.1.1.4 空白無疏水處理碳紙與不同聚合圈數之碳紙電極SEM圖 (5,000倍)….33 圖3.2.1 FTO導電玻璃表面撕下之PPy-P43BA高分子膜……………………........….35 圖3.2.2 以FTO為電極基板電聚合PPy-P43BA所生成的高分子膜……................…36 圖3.2.1.1 菌體放電的四種可能機制 [38]………………...…………………………..38 圖3.3.1 開路電位法量測燃料電池對外接電阻放電之示意圖……………….....…..39 圖3.3.2 直接甲醇燃料電池展示機………………………………………………….…40 圖3.3.3 DMFC展示機加入甲醇後,兩極電位差值之變化……………………………41 圖3.3.4 DMFC展示機加入甲醇,開關電鍵對於兩極電壓的測試……………………42 圖3.4.1 微生物燃料電池之電位差在充放電時之監測……………………………...44 圖3.4.2 微生物燃料電池之電位差在充放電時之監測…………………………...…45 圖3.5.1 鹽橋連通管效應 (a)鹽橋系統架設完成當天 (b) 鹽橋系統架設4天後…...48 圖3.5.1.1 經不同修飾之碳紙電極在微生物燃料電池功率之貢獻………………....50 圖3.5.2.1 不同材料修飾之電極對菌體附生之觀察………………………...……….52 圖3.5.2.2 不同材料修飾之電極對菌體附生之觀察………………………...……….53 圖3.5.3 不同聚合時間之共聚高分子修飾電極對微生物燃料電池功率輸出之影響.54 圖3.5.4.1 微生物陽極材料與碳源對微生物燃料電池功率之影響……………….….56 圖3.5.4.2 微生物陽極材料與碳源對微生物燃料電池功率之影響………………......57 圖3.5.5.1 碳紙電極在PBS中之交流阻抗分析Bode圖……………………………....59 圖3.5.5.2 兩碳紙電極以鹽橋區隔雙槽,在PBS中之交流阻抗分析Bode圖………..59 圖3.5.5.3 兩碳紙電極以Nafion®117區隔雙槽,在PBS中之交流阻抗分析Bode圖.60 圖3.5.5 質子交換膜系統之微生物燃料系統功率與極化曲線圖…………………….61 圖3.6.1.1 以變動波長的方式將不同稀釋程度的飽和菌液作全區掃描,並將飽和菌液以5000 rpm離心15分鐘後之上清液與稀釋5倍後之上清液也作全區掃描………...63 圖3.6.1.2以變動波長的方式對菌液與培養基樣本作全區掃描……………………....64 圖3.6.1.3 飽和菌液依不等倍率稀釋後以不等波長測其吸光值………………….….64 圖3.6.1.4 菌液濃度吸光值與相對應菌液汁乾菌重之關係圖………………………..65 圖3.6.1.5 Rhodopseudomonas sphaeroides生長曲線………………………………......65 圖3.6.2.1 微生物燃料電池連續操作之電流監測……………………………………..67 圖3.6.2.2 微生物燃料電池以同槽並聯3陽極連續操作之電流監測…………......….67 圖3.6.2.3 同槽並聯3支陽極與單支陽極系統在功率輸出之比較…………………...68 圖3.6.2.4 同槽並聯3支陽極與單支陽極系統在極化曲線之比較…………………...68 圖3.7.1 微生物燃料電池運作時產氣之收集………………………………………….69 圖3.8.1 Rhodopseudomonas sphaeroides之電子顯微鏡照片………………………….70 圖3.8.2 Rhodopseudomonas sphaeroides之電子顯微鏡照片 (分離培養基後) …..….71

    [1] Newton, GRAPHIC SCIENCE MAGAZINE, 復刊9號
    [2] Frank Davis, Séamus P.J. Higson. Biofuel cells — Recent advances and applications. Biosensors and Bioelectronics 22 (2007) 1224–1235.
    [3] 江奇儒,聚吡咯奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池系統之應用,國立成功大學化學工程學系碩士論文 (2007)
    [4] Scott Calabrese Barton, Josh Gallaway, and Plamen Atanassov. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104 (2004) 4867–4886.
    [5] http://en.wikipedia.org/wiki/Photosynthesis
    [6] http://www.life.umd.edu/classroom/bsci424/BSCI223WebSiteFiles/PhotosyntheticBacteria.htm
    [7] Suzuki Y. On hydrogen as fuel gas. International Journal of Hydrogen Energy 7 (1982) 227–230.
    [8] Debabrata Das, T. Nejat Veziroglu. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33 (2008) 6046–6057.
    [9] Bolton JR. Solar photoproduction of hydrogen. Solar Energy 57 (1996) 37–50.
    [10] R.C. Saxena, D.K. Adhikari, H.B. Goyal. Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews 13 (2009) 167–178.
    [11] Nan-Qi Ren, Bing-Feng Liu, Jie Ding, Guo-Jun Xie. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresource Technology 100 (2009) 484–487.
    [12] Y H. Yokoi, R. Maki, J. Hirose, S. Hayashi. Microbial production of hydrogen from starch-manufactering wastes. Biomass and Bioenergy 22 (2002) 389–395.
    [13] M. C. Potter. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 84 (571) (1911) 260–276.
    [14] Frank Davis, Séamus P.J. Higson. Biofuel cells—Recent advances and applications. Biosensors and Bioelectronics 22 (2007) 1224–1235.
    [15] Robert Arechederra, Shelley D. Minteer. Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes. Electrochimica Acta 53 (2008) 6698–6703.
    [16] JR Bolton. Solar photoproduction of hydrogen. Solar Energy 57 (1996) 37–50.
    [17] Derek R. Lovley. Bug juice: harvesting electricity with microorganisms. Nature Reviews | Microbiology 4 (2006) 497–508.
    [18] Lilit Gabrielyan, Armen Trchounian. Relationship between molecular hydrogen production, proton transport and the F0F1-ATPase activity in Rhodobacter sphaeroides strains from mineral springs. International Journal of Hydrogen Energy 34 (2009) 2567–2572.
    [19] Gemma Reguera, Kevin D. McCarthy, Teena Mehta, Julie S. Nicoll, Mark T. Tuominen, Derek R. Lovley. Extracellular electron transfer via microbial nanowires. Nature 435 (2005) 1098–1101.
    [20] Susan Jones. New electricigens get wired. Nature Reviews Microbiology 4 (2006) 642–643.
    [21] Yuri A. Gorby, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of National Academy of Sciences of the United States of America. 103 (30) (2006) 11358–11363.
    [22] Pin-Ching Maness, Shiv Thammannagowda. II.F.6 Fermentation and electrohydrogenic approaches to hydrogen production. DOE Hydrogen Program, FY 2008 Annual Progress Report (2008) 204–207.
    [23] H. H.P. Fang, H. Zhu, T. Zhang. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 31 (2006) 2223–2230.
    [24] 陳逸信,苯胺共聚物導電高分子之電化學聚合及應用,國立成功大學化工碩士論文, 4–7;15–20, 2002
    [25] Jean Roncali. Conjugated Poly(thiophenes): synthesis, functionalizatlon, and applications. Chemical Review 92 (1992) 711–738.
    [26] T. Moriuchi, K. Morishima, Y. Furukawa. Evaluation of bacteria compatible microporous surfaces for biofuel cells. CIRP Annals — Manufacturing Technology 57 (2008) 571–574.
    [27] Alan G. MacDiarmid. Nobel Prize 2000 Lecture “Synthetic Metals”: a novel rule for organic polymers. Current Applied Physics 1 (2001) 269–279.
    [28] S. Cosnier, C. Gondran. Fabrication of biosensors by attachment of biological macromolecules to electropolymerized conducting films. ANALUSIS 27 (1999) 558–564.
    [29] Tarushee Ahuja, Irfan Ahmad Mir, Devendra Kumar, Rajesh. Biomaterials 28 (2007) 791–805.
    [30] Y.K. Cho, T.J. Donohue, I. Tejedor, M.A. Anderson, K.D. McMahon, D.R. Noguera. Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology 104 (2008) 640–650.
    [31] Justin C. Biffinger, Jeremy Pietron, Ricky Ray, Brend Little, Bradley R. Ringeisen. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors and Bioelectronics 22 (2007) 1672–1679.
    [32] Benjamin Erable, Luc Etcheverry, Alain Bergel. Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochemistry Communications 11 (2009) 619–622.
    [33] 黃鎮江,燃料電池與技術,國立台南大學綠色能源科技研究所
    [34] 黃秉毅,苯胺與鄰苯二胺共聚物固定酵素於葡萄糖/氧生物燃料電池之研究,國立成功大學化學工程學系碩士論文 (2008)
    [35] Mei-Jywan Syu, Yu-Sung Chang. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Biosensors and Bioelectronics 24 (2009) 2671–2677.
    [36] G. Harsanyl, Polymer Films in Sensor Applications, 209, 1995.
    [37] Swades K. Chaudhuri, Derek R. Lovley. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology 21 (2003) 1229–1232.
    [38] Olivier Schaetzle, Frédéric Barrière, Uwe Schröder. An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy and Environmental Science 2 (2009) 96–99.
    [39] Tatsuhiro Okada, Steffen Møller-Holst, Oddvar Gorseth, Signe Kjelstrup. Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. Journal of Electroanalytical Chemistry 442 (1998) 137–145.
    [40] Hong Liu, Shaoan Cheng, Liping Huang, Bruce E. Logan. Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources 179 (2008) 274–279.
    [41] Bruce E. Logan. Exoelectrogenic bacteria that power microbial fuel cells. NATURE REVIEWS | Microbiology 7 (2009) 375–381.

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE