| 研究生: |
張佑嵩 Chang, Yu-Sung |
|---|---|
| 論文名稱: |
以光合菌Rhodopseudomonas sphaeroides生質產氫燃料電池系統電能輸出效應之研究 Investigation of power output efficiency from the microbial hydrogen biofuel cell system with the photosynthetic bacteria, Rhodopseudomonas sphaeroides |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 微生物燃料電池 、Rhodopseudomonas sphaeroides 、polypyrrole 、光合菌 、電化學阻抗光譜 、質子交換膜 、鹽橋 、碳紙 、4-(3-pyrrolyl)butyric acid |
| 外文關鍵詞: | Rhodopseudomonas sphaeroides, microbial fuel cell, photosynthetic bacteria, polypyrrole, 4-(3-pyrrolyl)butyric acid, carbon paper, salt bridge, proton-exchange membrane, electrochemical impedance spectrum (EIS) |
| 相關次數: | 點閱:157 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在能源短缺與環保意識高漲的21世紀中,綠色能源早已不再是陌生的名詞。石油存量即將枯竭,溫室效應正影響著大氣氣候,創新能源的開發是當今熱門的課題。光合細菌擁有利用太陽光的能力,以菌綠素吸收太陽光能,並分解有機物產生一連串的代謝反應電子。菌體膜表面具有hydrogenase可以催化氫離子並生成氫氣。本論文將研究光合菌Rhodopseudomonas sphaeroides在微生物燃料電池模組系統的發展潛力。以碳紙為微生物陽極基材,並以具生物相容性之導電性單體 (pyrrole) 與其單體衍生物 (4-(3-pyrrolyl)butyric acid) 形成導電性共聚高分子以修飾碳紙表面,並固著微生物於電極上。SEM表面觀察與電化學分析儀檢測法可用來比較不同聚合時間對導電性高分子膜厚度的影響及對於微生物燃料電池功率與電流輸出的差異,以聚合時間為3小時之共聚導電性高分子為陽極之微生物燃料電池系統為最佳,鹽橋系統中可達280 mW/m3之最大功率輸出。
以燃料電池之電流密度與功率密度之效能來判斷材料對系統的影響;亦比較鹽橋系統與質子交換膜系統之效能,並利用極化曲線與交流阻抗分析儀量測燃料電池內阻抗的變化。質子交換膜系統之效能明顯優於鹽橋系統,可有1,800 mW/m3 之最大功率輸出。於電解培養液中添加不同成份的促進劑以探討對電池功率輸出之影響;穩定操作下,微生物燃料電池可達0.6 V 之開環電位;除此之外,在不改變槽體體積下,增加生物陽極之面積至3倍,且在外接280 Ω電阻下可以得到最大功率輸出為2,300 mW/m3。本微生物燃料電池在不受雜菌汙染之下,定期更新培養基與陰極溶液是可以連續長期操作至少2個月。
In the 21th century, the human beings are aware of environmental consciousness and deficiency of energy, people become to pay great attention to the green energy. To discover an alternative energy resource is under urgent needs since we are about to run out of the petroleum stock. Particularly, green house effect caused by the evolution of carbon dioxide into the atmosphere is changing the climate gradually.
The photosynthetic bacteria has the ability to capture and utilize the sun light. They use the bacteriochlorophyll to absorb the solar energy while initiating the catabolism of organic compounds to produce electrons during a series of metabolism. The enzyme, hydrogenase, on the surface of bacteria membrane, can catalyze the reaction of hydrogen ions into hydrogen molecules.
In this work, we investigated the microbial fuel cell (MFC) system with the photosynthetic bacteria, Rhodopseudomonas sphaeroides. Carbon paper modified by the biocompatible material, polypyrrole-co-poly(4-(3-pyrrolyl)butyric acid) (PPy-P43BA), was served as the anode of the MFC system for the immobilization of the microbes. Scanning electron microscopy (SEM) for the observation of the surface morphology of carbon paper together with the electrochemical analysis of the microbial fuel cell was used to compare the influence of polymerization time to the film thickness of the fabricated conducting polymer as well as the power efficiency and current output of the MFC system. Best performance from the MFC system was achieved from the preparation of the conducting copolymer film onto the anode with the electropolymerization time of 3 hours. Via doing so, a maximum power efficiency of 280 mW/m3 could be obtained from the MFC system with a salt bridge for the transportation of ions.
Power density and current density were used as the index to estimate the influence of materials on the fuel cell systems. Both index can also be used to compare the efficiency of salt bridge system and Nafion® proton-exchange membrane system. The results showed that Nafion® membrane system had superior power density output of 1,800 mW/m3 to the salt bridge system. Cell polarization curves and electrochemical impedance spectrum (EIS) were also applied to estimate the internal resistance of the microbial fuel cell. The influences of power outputs with respect to different designs of the microbial fuel cell systems were studied in this work. Under stable operating conditions, the MFC system could reach an open-circuit potential of 0.6 V. Increasing the bio-anode surface area 3 folds could further enhance the maximum power output to 2,300 mW/m3 with an external resistor of 280 Ω. The MFC system could operate for at least 2 months by refreshing culture medium periodically.
[1] Newton, GRAPHIC SCIENCE MAGAZINE, 復刊9號
[2] Frank Davis, Séamus P.J. Higson. Biofuel cells — Recent advances and applications. Biosensors and Bioelectronics 22 (2007) 1224–1235.
[3] 江奇儒,聚吡咯奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池系統之應用,國立成功大學化學工程學系碩士論文 (2007)
[4] Scott Calabrese Barton, Josh Gallaway, and Plamen Atanassov. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104 (2004) 4867–4886.
[5] http://en.wikipedia.org/wiki/Photosynthesis
[6] http://www.life.umd.edu/classroom/bsci424/BSCI223WebSiteFiles/PhotosyntheticBacteria.htm
[7] Suzuki Y. On hydrogen as fuel gas. International Journal of Hydrogen Energy 7 (1982) 227–230.
[8] Debabrata Das, T. Nejat Veziroglu. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33 (2008) 6046–6057.
[9] Bolton JR. Solar photoproduction of hydrogen. Solar Energy 57 (1996) 37–50.
[10] R.C. Saxena, D.K. Adhikari, H.B. Goyal. Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews 13 (2009) 167–178.
[11] Nan-Qi Ren, Bing-Feng Liu, Jie Ding, Guo-Jun Xie. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge. Bioresource Technology 100 (2009) 484–487.
[12] Y H. Yokoi, R. Maki, J. Hirose, S. Hayashi. Microbial production of hydrogen from starch-manufactering wastes. Biomass and Bioenergy 22 (2002) 389–395.
[13] M. C. Potter. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 84 (571) (1911) 260–276.
[14] Frank Davis, Séamus P.J. Higson. Biofuel cells—Recent advances and applications. Biosensors and Bioelectronics 22 (2007) 1224–1235.
[15] Robert Arechederra, Shelley D. Minteer. Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes. Electrochimica Acta 53 (2008) 6698–6703.
[16] JR Bolton. Solar photoproduction of hydrogen. Solar Energy 57 (1996) 37–50.
[17] Derek R. Lovley. Bug juice: harvesting electricity with microorganisms. Nature Reviews | Microbiology 4 (2006) 497–508.
[18] Lilit Gabrielyan, Armen Trchounian. Relationship between molecular hydrogen production, proton transport and the F0F1-ATPase activity in Rhodobacter sphaeroides strains from mineral springs. International Journal of Hydrogen Energy 34 (2009) 2567–2572.
[19] Gemma Reguera, Kevin D. McCarthy, Teena Mehta, Julie S. Nicoll, Mark T. Tuominen, Derek R. Lovley. Extracellular electron transfer via microbial nanowires. Nature 435 (2005) 1098–1101.
[20] Susan Jones. New electricigens get wired. Nature Reviews Microbiology 4 (2006) 642–643.
[21] Yuri A. Gorby, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of National Academy of Sciences of the United States of America. 103 (30) (2006) 11358–11363.
[22] Pin-Ching Maness, Shiv Thammannagowda. II.F.6 Fermentation and electrohydrogenic approaches to hydrogen production. DOE Hydrogen Program, FY 2008 Annual Progress Report (2008) 204–207.
[23] H. H.P. Fang, H. Zhu, T. Zhang. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 31 (2006) 2223–2230.
[24] 陳逸信,苯胺共聚物導電高分子之電化學聚合及應用,國立成功大學化工碩士論文, 4–7;15–20, 2002
[25] Jean Roncali. Conjugated Poly(thiophenes): synthesis, functionalizatlon, and applications. Chemical Review 92 (1992) 711–738.
[26] T. Moriuchi, K. Morishima, Y. Furukawa. Evaluation of bacteria compatible microporous surfaces for biofuel cells. CIRP Annals — Manufacturing Technology 57 (2008) 571–574.
[27] Alan G. MacDiarmid. Nobel Prize 2000 Lecture “Synthetic Metals”: a novel rule for organic polymers. Current Applied Physics 1 (2001) 269–279.
[28] S. Cosnier, C. Gondran. Fabrication of biosensors by attachment of biological macromolecules to electropolymerized conducting films. ANALUSIS 27 (1999) 558–564.
[29] Tarushee Ahuja, Irfan Ahmad Mir, Devendra Kumar, Rajesh. Biomaterials 28 (2007) 791–805.
[30] Y.K. Cho, T.J. Donohue, I. Tejedor, M.A. Anderson, K.D. McMahon, D.R. Noguera. Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology 104 (2008) 640–650.
[31] Justin C. Biffinger, Jeremy Pietron, Ricky Ray, Brend Little, Bradley R. Ringeisen. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors and Bioelectronics 22 (2007) 1672–1679.
[32] Benjamin Erable, Luc Etcheverry, Alain Bergel. Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment. Electrochemistry Communications 11 (2009) 619–622.
[33] 黃鎮江,燃料電池與技術,國立台南大學綠色能源科技研究所
[34] 黃秉毅,苯胺與鄰苯二胺共聚物固定酵素於葡萄糖/氧生物燃料電池之研究,國立成功大學化學工程學系碩士論文 (2008)
[35] Mei-Jywan Syu, Yu-Sung Chang. Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix. Biosensors and Bioelectronics 24 (2009) 2671–2677.
[36] G. Harsanyl, Polymer Films in Sensor Applications, 209, 1995.
[37] Swades K. Chaudhuri, Derek R. Lovley. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology 21 (2003) 1229–1232.
[38] Olivier Schaetzle, Frédéric Barrière, Uwe Schröder. An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy and Environmental Science 2 (2009) 96–99.
[39] Tatsuhiro Okada, Steffen Møller-Holst, Oddvar Gorseth, Signe Kjelstrup. Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. Journal of Electroanalytical Chemistry 442 (1998) 137–145.
[40] Hong Liu, Shaoan Cheng, Liping Huang, Bruce E. Logan. Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources 179 (2008) 274–279.
[41] Bruce E. Logan. Exoelectrogenic bacteria that power microbial fuel cells. NATURE REVIEWS | Microbiology 7 (2009) 375–381.
校內:2027-06-01公開