簡易檢索 / 詳目顯示

研究生: 枋敬賀
Fang, Ching-Ho
論文名稱: B添加對Sn-1.5Ag-0.7Cu-0.05Ni低銀無鉛銲料顯微組織與機械性質影響之研究
Effect of Boron Addition on Microstructure and Mechanical Properties of Low-Ag-content Lead-free Sn-1.5Ag-0.7Cu-0.05Ni Solder Joints
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 低銀無鉛銲料添加B共晶微結構Ag3Sn低週疲勞試驗
外文關鍵詞: Low silver lead-free solder, boron addition, Microstructure, Ag3Sn, Low cycle fatigue
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討添加不同的B含量(0.0010wt.%、0.0025wt.%、0.0050wt.%)對於Sn-1.5Ag-0.7Cu-0.05Ni(SAC157-0.05Ni)低銀無鉛銲料的微結構及機械性質影響。以及高溫熱儲存下(150℃,225hrs)銲料的抗熱能力,研究結果與目前Sn-1.5Ag-0.7Cu(SAC157)低銀銲料進行比較。
    研究結果顯示SAC157-0.05Ni銲料內添加B元素後,共晶組織有變細緻且密集之趨勢,特別在添加0.0025wt.%時趨勢最為明顯,強度硬度隨之升高,後續使用SEM進行微觀分析,發現其細緻共晶組織主要為Ag3Sn,隨著B添加量增加其Ag3Sn形態也隨之改變,添加0.001wt.%時銲料Ag3Sn主要型態為板片狀,添加至0.0025wt.%時,銲料Ag3Sn型態轉變為長條帶狀,而當添加量至0.005wt.%時Ag3Sn維持長條帶狀,但於板片Ag3Sn附近發現含B的四方柱體相, IMC層研究發現,IMC層厚度隨著B添加,厚度有降低趨勢,時效試驗顯示B的添加可阻礙Sn擴散進入IMC層形成新的(Cu,Ni)6Sn5,促使(Cu,Ni)6Sn5在時效下厚度僅有微幅的增加,研究成果證實B可抑制高溫下SAC157-0.05Ni銲料IMC層的生長。
    機械性質方面,經由銲點剪切試驗可得知,當銲料添加B後,延性皆有明顯提升的趨勢,時效前後的低週疲勞試驗結果顯示,添加B的銲料疲勞壽命皆較SAC157及SAC157-0.05Ni有所提升,原因主要為添加B有晶粒細化的作用,可使銲料擁有較佳的延性,使裂紋生長緩慢,且B的添加可有效抑制熱儲存後IMC層的成長及減緩析出物粗大化現象,因此有助於提升低銀SAC157-0.05Ni銲料的機械性質及疲勞壽命。

    The The purpose of this study was to investigate the effects of addition of boron element (0.0010, 0.0025, 0.0050wt.%) on the microstructure, and mechanical properties of Sn-1.5Ag-0.7Cu-0.05Ni (SAC157-0.05Ni) low-silver lead-free solder. The heat resistance of the solder was evaluated using a high-temperature heat storage test (150°C, 225 hrs) and compared with boron-free solder Sn-1.5Ag-0.7Cu (SAC157).
    When B element is added to SAC157-0.05Ni solder, the eutectic structure tends to be fine and dense, especially when 0.0025 wt.% of B is added. SEM is used for microscopic analysis. SEM micrographs showed that the fine eutectic structure is mainly precipitate Ag3Sn. The morphology of Ag3Sn changes with the addition of B. When 0.001wt.% is added, the main form of solder Ag3Sn is plate-like. When the amount is increased to 0.0025wt.%, Ag3Sn’s morphology changes to a long strip shape, while it maintains a long strip shape when boron addition reaches 0.005 wt.%. While observing microstructure of SAC157-0.05Ni-0.005B, a tetragonal column phase containing B, namely Cuboidal, is found near plate-like Ag3Sn. In terms of IMC thickness, it is found that addition of B can hinder the diffusion of Sn into the IMC layer and reduce the growth of (Cu, Ni)6Sn5 after aging, indicating that B can suppress the growth of the IMC layer of SAC157-0.05Ni solder at high temperature.
    In terms of mechanical properties, it can be seen from the solder joint shear test after boron addition, the ductility of the solder is obviously improved. The low cycle fatigue test results before and after the heat storage show that the fatigue life of the solder added with B is better than that of SAC157 and SAC157-0.05Ni, mainly because B has the effect of grain refinement, which can make the solder having better ductility and slower crack growth. In addition, the addition of B can effectively inhibit the growth of the IMC layer after heat storage and coarsening of precipitates. In conclusion, addition of boron to solder SAC157-0.05Ni significantly improve its mechanical properties and fatigue life.

    總目錄 摘要 I Extended Abstract II 誌謝 VIII 總目錄 IX 表目錄 XI 圖目錄 XII 第一章 前言 1 1-1前言 1 1-2研究動機與目的 4 第二章 文獻回顧 6 2-1 電子封裝技術簡介 6 2-2 無鉛銲料發展概況 10 2-3 二元無鉛銲料 12 2-3-1 Sn-Ag 無鉛銲料 12 2-3-2 Sn-Cu 無鉛銲料 13 2-4 三元無鉛銲料 15 2-4-1 Sn-Ag-Cu無鉛銲料 15 2-4-2 Sn-Ag-Ni無鉛銲料 17 2-5 四元無鉛銲料 19 2-5-1 Sn-Ag-Cu-Ni 無鉛銲料 19 2-5-2 Sn-Ag-Cu-B 無鉛銲料 24 2-6 五元無鉛銲料 26 2-6-1 Sn-Ag-Cu-Ni-B 無鉛銲料 26 2-7 銲點低週疲勞 27 2-7-1 銲點可靠度概述 27 2-7-2 銲點低週疲勞性質概述 28 2-7-3 銲點疲勞壽命評估 29 第三章 實驗步驟與方法 32 3-1 實驗規劃 32 3-2 試件製備 34 3-3 實驗內容 42 3-4 疲勞試驗參數設定 45 第四章 研究結果與討論 47 4-1 添加B對銲料素材微結構之影響 47 4-1-1 高溫熱儲存前金相微結構 47 4-1-2 高溫熱儲存後金相微結構 63 4-2 添加B對銲料硬度之影響 65 4-3 添加B對銲料IMC層成長之影響 67 4-4 剪切試驗 78 4-5 低週疲勞試驗 83 4-5-1 添加B對SACN銲料低週疲勞之影響 83 4-5-2 高溫熱儲存對銲點低週疲勞之影響 88 第五章 結論 91 第六章 未來研究方向 93 第七章 參考文獻 94 第八章 附錄 98 8-1 SACNB銲料中各相的 B含量修正值計算 98   表目錄 表1-1 實驗選用之銲料代號與成份比例(wt.%) 5 表2-1 Sn-Ag-Cu合金之各種相比較表 16 表3-1 金屬元素物理性質 36 表3-2助銲劑成份表 36 表3-3等溫低週疲勞測試之參數設定 46 表4-1 Cu-Sn系統原子擴散係數 70 表4-2 銲料IMC層厚度隨熱儲存時間變化統計值 77   圖目錄 圖1-1 2006-2018年國際銀價趨勢 3 圖2-1 電子產品三層級封裝示意圖 8 圖2-2 引腳插入型封裝(a)Dual In-line Package (b)pin Grid Array[25] 9 圖2-3 表面黏著型封裝(a)Quad Flat Package(QFP) (b)Ball Grid Array(BGA) 9 圖2-4 BGA 封裝結構示意圖 9 圖2-5 Sn-Ag二元相圖 13 圖2-6 Sn-Cu二元相圖 14 圖2-7 Sn-Ag-Cu 三元相圖(a)左下角放大圖(b)原始大小圖 16 圖2-8時效1000小時IMC層厚度 (a)Sn-Ag (b)0.5Ni (c)1Ni (d)2Ni (e)3Ni 18 圖2-9 SAC305添加0.5及1.0wt.%Ni拉伸性能 21 圖2-10 SAC0307添加Ni對IMC層厚度時間關係圖(時效溫度180℃) 21 圖2-11 SAC0107添加(Co,Ni,Nd 0.05wt.%)機械性質圖(a)應力應變曲線(b)抗拉強度及延展性(c)剪應力 22 圖2-12 SAC157添加Ni對IMC層厚度時間關係圖(時效溫度150℃) 23 圖2-13 SAC157添加Ni對時效疲勞壽命影響(時效溫度150℃,225hrs) 24 圖2-14 不同B添加量合金銲料之DSC曲線 25 圖2-15 不同B添加量對於IMC層厚度變化(a)SAC105 (b)SAC105-0.1 (c)SAC105-0.2 26 圖2-16 銲點高速拉伸400mm/s斷裂表面(a)SAC105 (b)SAC105+0.05B 26 圖2-17 IMC層厚度與時效時間關係圖 27 圖2-18 金相組織(a)Sn-1.0Ag-0.5Cu(b)Sn-1.0Ag-Cu-0.05Ni(c)Sn-1.0Ag-0.5Cu-0.05Ni-0.01B(d)Sn-1.0Ag-0.5Cu-0.05Ni-0.02B 27 圖2-19 疲勞試驗之試件形式(a)塊材拉伸試件(b)塊材剪切試件(c)拉伸和雙搭接試件(d)SMD試件(e)單點搭接試件 29 圖2-20週期數與負載振幅關係示意圖 31 圖2-21 總應變的疲勞週期壽命 31 圖3-1 實驗規劃流程圖 33 圖3-2油浴製程中,圓錫片擺置模具 37 圖3-3油浴製作錫球示意圖 37 圖3-4 油浴製程完成,錫球樣貌 38 圖3-5 實際錫球大小 38 圖3-6線切割機台 AccuteX GE-32S 39 圖3-7不同號數研磨及拋光銅片 39 圖3-8雷射切割機 VSL 4.60 40 圖3-9防銲層(Solder Mask)實際樣貌 40 圖3-10單點搭接試件製作流程圖 41 圖3-11實際迴銲模具圖 41 圖3-12 Leitz Metallux3立式光學顯微鏡 43 圖3-13 AURIGA 高解析場發射掃描式電子顯微鏡 44 圖3-14剪切及疲勞試件夾持示意圖 44 圖3-15本研究選用合金之荷重與位移曲線 46 圖4-1 Sn-Ag-Cu 三元相圖(a)左下角放大圖(b)原始大小圖 51 圖4-2 Ni-Ag 二元相圖 52 圖4-3 Ni-Cu 二元相圖 52 圖4-4 Cu-B 二元相圖 53 圖4-5 Sn-B二元相圖 53 圖4-6 Ag-B二元相圖 54 圖4-7 Ni-B二元相圖 54 圖4-8 SAC157及Sn-Ag-Cu-Ni-xB 銲料素材微結構(As cast) 55 圖4-9 β-Sn面積測量示意圖 56 圖4-10 各銲料之Primary β-Sn總面積比率 56 圖4-11 SACN-10B未熱儲存之微結構深腐蝕形貌SEM金相及EDS分析 57 圖4-12 SACN-25B未熱儲存之微結構深腐蝕形貌SEM金相及EDS分析 58 圖4-13 SACN-50B未熱儲存之微結構深腐蝕形貌SEM金相及EDS分析 59 圖4-14 SACN-50B銲料內Ag3Sn附近含B的四方柱狀體(SEM) 60 圖4-15 SACN-50B銲料(Cu,Ni)6Sn5附近含B的四方柱狀體形貌及EDS 60 圖4-16 SACN-50銲料四方柱狀體上視圖(SEM) 61 圖4-17 SAC157添加0.005wt.%B銲料內四方柱狀體 61 圖4-18 修正後B於析出物及基地變化量(ppm wt.%) 62 圖4-19 SAC157及Sn-Ag-Cu-Ni-xB 銲料素材微結構(As cast)(225小時熱儲存) 64 圖4-20 SAC157及SACN-xB微硬度試驗統計 66 圖4-21 介面層量測方式示意圖 71 圖4-22 SAC157/Cu基板之介面SEM-IMC層(1000x) (a) 0hrs(b) 225hrs 72 圖4-23 SACN/Cu基板之介面SEM-IMC層(1000x) (a) 0hrs(b) 225hrs 72 圖4-24 SACN-10B/Cu基板之介面SEM-IMC層(1000x) (a) 0hrs(b) 225hrs 73 圖4-25 SACN-25B/Cu基板之介面SEM-IMC層(1000x) (a) 0hrs(b) 225hrs 73 圖4-26 SACN-50B/Cu基板之介面SEM-IMC層(1000x) (a) 0hrs(b) 225hrs 74 圖4-27 銲料介面IMC層熱儲存變化情形 75 圖4-28 SAC157及SACN-xB介面金屬間化合物層不同時效時間下的變化(150℃) 76 圖4-29 SAC157及SACN-xB銲料IMC層厚度變化比較 77 圖4-30 SAC157及SACN-10B負荷與位移圖 79 圖4-31 SAC157及SACN-25B負荷與位移圖 80 圖4-32 SAC157及SACN-50B負荷與位移圖 80 圖4-33 不同B含量銲點負荷與位移曲線圖 81 圖4-34 SAC157及SACN-xB銲點剪切斷口圖(50x) 81 圖4-35 SAC157及SACN-xB銲剪切試驗統計結果 82 圖4-36 桶狀銲點形貌 85 圖4-37 hysteresis loop曲線之塑性位移量與負載範圍示意圖 85 圖4-38 不同成份銲點於第十周期之hysteresis loop 86 圖4-39 SAC157及SACN-xB桶狀銲點之疲勞曲線 86 圖4-40 SAC157及SACN-xB銲點疲勞試驗統計結果 87 圖4-41 SAC157及SACN-xB桶狀銲點時效前後荷重週期曲線比較 90 圖4-42 SAC157及SACN-xB桶狀銲點時效後之荷重曲線 90

    [1] H. Hu, "Knowledge of diagnosis and reproductive history among survivors of childhood plumbism," American journal of public health, vol. 81, no. 8, pp. 1070-1072, 1991.
    [2] S. Martin and W. Griswold, "Human health effects of heavy metals," Environmental Science and Technology briefs for citizens, vol. 15, pp. 1-6, 2009.
    [3] K. Kim, S. Huh, and K. Suganuma, "Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys," Materials Science and Engineering: A, vol. 333, no. 1-2, pp. 106-114, 2002.
    [4] M. Muller, S. Wiese, and K.-j. Wolter, "Influence of cooling rate and composition on the solidification of SnAgCu solders," in Electronics Systemintegration Technology Conference, 2006. 1st, 2006, vol. 2, pp. 1303-1311: IEEE.
    [5] J. J. Sundelin, S. T. Nurmi, T. K. Lepistö, and E. O. Ristolainen, "Mechanical and microstructural properties of SnAgCu solder joints," Materials Science and Engineering: A, vol. 420, no. 1-2, pp. 55-62, 2006.
    [6] "BullionVault: https://zh-hant.bullionvault.com/silver-price-chart.do."
    [7] Y. Kariya, T. Hosoi, S. Terashima, M. Tanaka, and M. Otsuka, "Effect of silver content on the shear fatigue properties of Sn-Ag-Cu flip-chip interconnects," Journal of electronic materials, vol. 33, no. 4, pp. 321-328, 2004.
    [8] F. Cheng, F. Gao, J. Zhang, W. Jin, and X. Xiao, "Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys," Journal of materials science, vol. 46, no. 10, pp. 3424-3429, 2011.
    [9] Y. Kariya, T. Hosoi, T. Kimura, S. Terashima, M. Tanaka, and T. Suga, "Fatigue life enhancement of low silver content Sn-Ag-Cu flip-chip interconnects by Ni addition," in Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM'04. The Ninth Intersociety Conference on, 2004, vol. 2, pp. 103-108: IEEE.
    [10] 李昭慶, "Sn-xAg-0.7Cu無鉛銲料微結構與低週疲勞研究," 成功大學機械工程學系碩士論文, pp. 1-102, 2013.
    [11] D. Suh et al., "Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions," Materials Science and Engineering: A, vol. 460, pp. 595-603, 2007.
    [12] L.-W. Lin, J.-M. Song, Y.-S. Lai, Y.-T. Chiu, N.-C. Lee, and J.-Y. Uan, "Alloying modification of Sn–Ag–Cu solders by manganese and titanium," Microelectronics Reliability, vol. 49, no. 3, pp. 235-241, 2009.
    [13] 陳郁文, "Sn-xAg-0.7Cu無鉛銲料銲點時效影響與低週破壞之研究," 成功大學機械工程學系碩士論文, pp. 1-114, 2016.
    [14] J.-H. Lee, A.-M. Yu, J.-H. Kim, M.-S. Kim, and N. Kang, "Reaction properties and interfacial intermetallics for Sn− xAg− 0.5 Cu solders as a function of Ag content," Metals and Materials International, vol. 14, no. 5, pp. 649-654, 2008.
    [15] I. E. Anderson, "Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications," Journal of Materials Science: Materials in Electronics, vol. 18, no. 1-3, pp. 55-76, 2007.
    [16] P. Yao, P. Liu, and J. Liu, "Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu–xNi composite solder joints on electrolytic Ni/Au metallized substrate," Journal of Alloys and Compounds, vol. 462, no. 1-2, pp. 73-79, 2008.
    [17] 李洋憲, "Sn-Ag-xNi複合銲料與銅基板間銲點的機械性能及微結構之研究," 成功大學機械工程學系博士論文, pp. 1-157, 2006.
    [18] 陳世榮, "添加Ni粉顆粒對Sn-Ag-Sb無鉛銲料銲點微結構與剪切強度之影響," 成功大學機械工程學系碩士論文, pp. 1-86, 2005.
    [19] 洪瑞隆, "Ni添加對Sn-1.5Ag-0.7Cu無鉛銲料低週疲勞破壞及時效影響之研究," 成功大學機械工程學系碩士論文, pp. 1-103, 2017.
    [20] Y. Wang, Y. Lin, C. Tu, and C. Kao, "Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu," Journal of alloys and compounds, vol. 478, no. 1-2, pp. 121-127, 2009.
    [21] H. Choi et al., "Improved strength of boron-doped Sn-1.0 Ag-0.5 Cu solder joints under aging conditions," Intermetallics, vol. 20, no. 1, pp. 155-159, 2012.
    [22] R. D. Wang, S. M. Zhang, Q. Hu, and F. W. Zhang, "Effect of Boron on Microstructure and Properties of Sn-1.0 Ag-0.5 Cu Low-Silver Lead-Free Solder," in Materials Science Forum, 2017, vol. 898, pp. 908-916: Trans Tech Publ.
    [23] J.-W. Yoon, B.-I. Noh, and S.-B. Jung, "Mechanical reliability of sn-ag bga solder joints with various electroless Ni-P and Ni-B plating layers," IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 1, pp. 222-228, 2010.
    [24] J.-W. Yoon et al., "Effect of boron content in electroless Ni–B layer on plating layer properties and soldering characteristics with Sn–Ag solder," Journal of Alloys and Compounds, vol. 466, no. 1-2, pp. 73-79, 2008.
    [25] 徐祥禎, "電子構裝結構分析," 義守大學機械與自動化工程學系, pp. 1-10, 2009.
    [26] T. Instruments, "Flip chip ball grid array package reference guide," Literature Number: SPRU811A, 2005.
    [27] 江國寧, "電子構裝與計算力學," 國立清華大學動機系, pp. 1-13, 1994.
    [28] M. McCormack and S. Jin, "New, lead-free solders," Journal of Electronic Materials, vol. 23, no. 7, pp. 635-640, 1994.
    [29] S. K. Kang, "Effects of minor alloying additions on the properties and reliability of Pb-free solders and joints," IBM Rsrch. Report: Mater. Sci., 2010.
    [30] K. Subramanian, Lead-free solders: materials reliability for electronics. John Wiley & Sons, 2012.
    [31] Y.-L. Tsai and W.-S. Hwang, "Solidification behavior of Sn–9Zn–xAg lead-free solder alloys," Materials Science and Engineering: A, vol. 413, pp. 312-316, 2005.
    [32] A. Handbook, "Alloy phase diagrams," ASM international, vol. 3, p. 2.319, 1992.
    [33] K. Suganuma, S.-H. Huh, K. Kim, H. Nakase, and Y. Nakamura, "Effect of Ag content on properties of Sn-Ag binary alloy solder," Materials transactions, vol. 42, no. 2, pp. 286-291, 2001.
    [34] W. Yang, L. E. Felton, and R. W. Messler, "The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints," Journal of Electronic Materials, vol. 24, no. 10, pp. 1465-1472, 1995.
    [35] K. Tu, F. Ku, and T. Lee, "Morphological stability of solder reaction products in flip chip technology," Journal of electronic materials, vol. 30, no. 9, pp. 1129-1132, 2001.
    [36] S. Belyakov and C. Gourlay, "Metastable eutectic in Pb-free joints between Sn–3.5 Ag and Ni-based substrates," Materials Letters, vol. 148, pp. 91-95, 2015.
    [37] J.-K. Lin et al., "Characterization of lead-free solders and under bump metallurgies for flip-chip package," IEEE Transactions on Electronics Packaging Manufacturing, vol. 25, no. 4, pp. 300-307, 2002.
    [38] G. Zeng et al., "The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7 Cu/Cu solder joints," Acta Materialia, vol. 83, pp. 357-371, 2015.
    [39] H. Ma and J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging," Journal of materials science, vol. 44, no. 5, pp. 1141-1158, 2009.
    [40] M. Mustafa, J. C. Roberts, J. C. Suhling, and P. Lall, "The effects of aging on the fatigue life of lead free solders," in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, 2014, pp. 666-683: IEEE.
    [41] N. Mookam and K. Kanlayasiri, "Effect of soldering condition on formation of intermetallic phases developed between Sn–0.3 Ag–0.7 Cu low-silver lead-free solder and Cu substrate," Journal of Alloys and Compounds, vol. 509, no. 21, pp. 6276-6279, 2011.
    [42] A. El-Daly, A. El-Taher, and T. Dalloul, "Enhanced ductility and mechanical strength of Ni-doped Sn–3.0 Ag–0.5 Cu lead-free solders," Materials & Design, vol. 55, pp. 309-318, 2014.
    [43] A. El-Daly, A. Hammad, A. Fawzy, and D. Nasrallh, "Microstructure, mechanical properties, and deformation behavior of Sn–1.0 Ag–0.5 Cu solder after Ni and Sb additions," Materials & Design, vol. 43, pp. 40-49, 2013.
    [44] L. Wang, F. Sun, Y. Liu, and L. Wang, "Effect of Ni addition on the Sn-0.3 Ag-0.7 Cu solder joints," in Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP'09. International Conference on, 2009, pp. 830-833: IEEE.
    [45] X. Chen, J. Zhou, F. Xue, J. Bai, and Y. Yao, "Microstructures and mechanical properties of Sn-0.1 Ag-0.7 Cu-(Co, Ni, and Nd) lead-free solders," Journal of Electronic Materials, vol. 44, no. 2, pp. 725-732, 2015.
    [46] 謝喻丞, "Ni添加對Sn-1.5Ag-0.7Cu低銀無鉛銲料顯微組織與機械性質影響之研究," 成功大學機械工程學系碩士論文, pp. 1-85, 2015.
    [47] T. Weihs, V. Zinoviev, D. Viens, and E. Schulson, "The strength, hardness and ductility of Ni3Al with and without boron," Acta Metallurgica, vol. 35, no. 5, pp. 1109-1118, 1987.
    [48] X. Wang and X. He, "Effect of boron addition on structure and properties of low carbon bainitic steels," ISIJ international, vol. 42, no. Suppl, pp. S38-S46, 2002.
    [49] J.-F. Qu, J. Xu, Q. Hu, F.-W. Zhang, and S.-M. Zhang, "Modification of Sn–1.0 Ag–0.5 Cu solder using nickel and boron," Rare Metals, vol. 34, no. 11, pp. 783-788, 2015.
    [50] J. H. Pang, K. H. Tan, X. Shi, and Z. Wang, "Thermal cycling aging effects on microstructural and mechanical properties of a single PBGA solder joint specimen," IEEE Transactions on Components and Packaging Technologies, vol. 24, no. 1, pp. 10-15, 2001.
    [51] J. H. Pang, B. Xiong, and T. Low, "Low cycle fatigue study of lead free 99.3 Sn–0.7 Cu solder alloy," International Journal of Fatigue, vol. 26, no. 8, pp. 865-872, 2004.
    [52] G. E. Dieter and D. J. Bacon, Mechanical metallurgy. McGraw-hill New York, 1986.
    [53] W. Lee, L. Nguyen, and G. S. Selvaduray, "Solder joint fatigue models: review and applicability to chip scale packages," Microelectronics reliability, vol. 40, no. 2, pp. 231-244, 2000.
    [54] C. Kanchanomai and Y. Mutoh, "Effect of temperature on isothermal low cycle fatigue properties of Sn–Ag eutectic solder," Materials Science and Engineering: A, vol. 381, no. 1-2, pp. 113-120, 2004.
    [55] "BS-10助焊劑成分.http://www.goot.jp/en/handakanren/bs-10/."
    [56] C. Kanchanomai, Y. Miyashita, Y. Mutoh, and S. Mannan, "Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5 Sn–3.5 Ag," Materials Science and Engineering: A, vol. 345, no. 1-2, pp. 90-98, 2003.
    [57] 梁祐誠, "B添加對Sn-1.5Ag-0.7Cu低銀無鉛銲料顯微組織與機械性質影響之研究," 成功大學機械工程學系碩士論文, pp. 1-99, 2018.
    [58] M. Hyman, C. McCullough, C. Levi, and R. Mehrabian, "Evolution of boride morphologies in TiAl-B alloys," Metallurgical Transactions A, vol. 22, no. 7, pp. 1647-1662, 1991.
    [59] S. Roy, S. Suwas, S. Tamirisakandala, D. B. Miracle, and R. Srinivasan, "Development of solidification microstructure in boron-modified alloy Ti–6Al–4V–0.1 B," Acta Materialia, vol. 59, no. 14, pp. 5494-5510, 2011.
    [60] T. Cheng, "The mechanism of grain refinement in TiAl alloys by boron addition—an alternative hypothesis," Intermetallics, vol. 8, no. 1, pp. 29-37, 2000.
    [61] F. Han, B. Hwang, D.-W. Suh, Z. Wang, D. L. Lee, and S.-J. Kim, "Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels," Metals and materials international, vol. 14, no. 6, p. 667, 2008.
    [62] G. Melloy, P. Summon, and P. Podgursky, "Optimizing the boron effect," Metallurgical transactions, vol. 4, no. 10, pp. 2279-2289, 1973.
    [63] W. G. Moffatt, "Binary phase diagrams handbook," 1976.
    [64] X. Ma, T. Yoshikawa, and K. Morita, "Phase relations and thermodynamic property of boron in the silicon-tin melt at 1673 K," Journal of Alloys and Compounds, vol. 529, pp. 12-16, 2012.
    [65] S. Choi, T. Bieler, J. Lucas, and K. Subramanian, "Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging," Journal of Electronic Materials, vol. 28, no. 11, pp. 1209-1215, 1999.
    [66] M. Islam, A. Sharif, and Y. Chan, "Effect of volume in interfacial reaction between eutectic Sn-3.5% Ag-0.5% Cu solder and Cu metallization in microelectronic packaging," Journal of electronic materials, vol. 34, no. 2, pp. 143-149, 2005.
    [67] H.-T. Lee and M.-H. Chen, "Influence of intermetallic compounds on the adhesive strength of solder joints," Materials Science and Engineering: A, vol. 333, no. 1-2, pp. 24-34, 2002.
    [68] B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, J. Im, and P. S. Ho, "Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing," Acta Materialia, vol. 55, no. 8, pp. 2805-2814, 2007.
    [69] K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K. Tu, "Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability," Journal of applied physics, vol. 97, no. 2, p. 024508, 2005.
    [70] F. Gao, T. Takemoto, and H. Nishikawa, "Effects of Co and Ni addition on reactive diffusion between Sn–3.5 Ag solder and Cu during soldering and annealing," Materials Science and Engineering: A, vol. 420, no. 1-2, pp. 39-46, 2006.
    [71] A. Taub, S. Huang, and K. Chang, "Improved strength and ductility of Ni 3 Al by boron modification and rapid solidification," Metallurgical Transactions A, vol. 15, no. 2, pp. 399-402, 1984.
    [72] 張宏澤, "Sb添加對Sn-1.5Ag-0.7Cu低銀無鉛銲料顯微組織與機械性質影響之研究," 國立成功大學機械工程碩士論文, pp. 1-125, 2017.

    無法下載圖示 校內:2023-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE