簡易檢索 / 詳目顯示

研究生: 李明賢
Li, Ming-Shian
論文名稱: 液晶聚合物薄膜光子晶體超稜鏡現象之研究
Studies of superprism phenomenon based on holographic polymer dispersed liquid crystal films
指導教授: 傅永貴
Fuh, Ying-Guey Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 液晶聚合物薄膜光子晶體超稜鏡現象
外文關鍵詞: photonic crystals, HPDLC, superprism effect
相關次數: 點閱:60下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用奈米全像液晶聚合物薄膜(holographic polymer dispersed liquid crystal, HPDLC)作為二維光子晶體來驗證具偏振的超稜鏡現象。實驗上由三道同平面雷射光干涉,將干涉強弱分佈紀錄在液晶聚合物薄膜,形成HPDLC薄膜,具有二維有序的奈米液晶區域(直徑約為150nm)散佈在聚合物中,且利用SEM影像估計其週期約為350nm。實驗結果確認具有超稜鏡現象,白光色散可逹50°左右,且與入射光之偏振有關,理論上經由平面波展開法與實驗上HPDLC超稜鏡分光出的偏折光加以印證,結果發現實驗結果與理論相符。

     Polarization dependent superprism phenomenon was demonstrated using nano-sized holographic polymer dispersed liquid crystal (HPDLC) films. Experimentally, the HPDLC film was designed and fabricated using three coplanar interference beams. The fabricated HPDLC film contained two-dimensional (2D) ordered nano-sized LC domains (~150nm in diameter) embedded in polymer matrix; its periodicity was estimated to be 350nm under scanning electron microscopy. Superprism effect was confined using HPDLC photonic crystal. The deflection of a white light from HPDLC superprism was about 50°.The deflection of output light from the HPDLC superprism was compared and consistent with the theory based on the plane wave expansion method.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表索引 Ⅷ 第1章 液晶簡介 1-1 前言 1 1-2 液晶簡介                                                        1-2-1 液晶介紹 2 1-2-2 液晶分類 3 1-3 液晶的光電異向性及雙折射性 9 1-4 聚合物混合液晶(PDLC)薄膜 1-4-1 PDLC的製備 12 1-4-2 PDLC的光電特性 13 1-4-3 PDLC的應用 16 第2章 光子晶體簡介 2-1 光子晶體介紹 20 2-2 光子晶體的製程 21 2-3 光子晶體的應用 29 第3章 理論架構 3-1全像術 3-1-1 全像術簡介                   38 3-1-2 全像干涉 41 3-2光子晶體理論分析 3-2-1 基礎架構 43 3-2-2 平面波展開法(Plane wave expansion) 44 3-2-3 時域有限差分法(Finite difference time domain) 49 3-3 超稜鏡效應 3-3-1 文獻回顧 53 3-3-2 光在光子晶體的折射現象 55 第4章 實驗方法與過程 4-1 樣品備置 4-1-1 材料介紹 59 4-1-2 樣品製作 62 4-2 實驗裝置 63 4-3 掃瞄式電子顯微鏡 (Scanning Electron Microscope) 64 4-4 實驗量測 66 第5章 數值模擬與實驗結果分析與討論 5-1 實驗結果 5-1-1 掃描電子顥微鏡SEM影像 68 5-1-2 穿透光譜量測 69 5-2 數值模擬 5-2-1 全像干涉模擬 74 5-2-2 光子晶體能帶模擬 76 5-2-3 FDTD模擬 81 5-3 討論 83 第6章 結論與未來展望 6-1 結論 86 6-2 未來展望 86 參考文獻 89

    參考文獻
    [1] 顧鴻壽, 周本逹, 陳密, 張德安, 樊雨心, 周宜衡, “平面面板顯示器-基本概論”, 高立圖書 第二版 (2004)
    [2] P. J. Collings and M. Hird原著, 楊怡寬, 郭蘭生, 鄭殷立編譯, “液晶化學及物理入門”, 偉明圖書 第一版 (2001)
    [3]L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springr-Verlag, 1st ed. (1994)
    [4]V. I. Kopp, B. Fan, H. K. M. Vithana and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals”, Opt. Lett. 23, 1707 (1998)
    [5] Andy Y. G. Fuh and Tsung Hsiem Lin, “Lasing in chiral photonic liquid crystals and associated frequency tunning”, Opt. Express 12, 1857 (2004)
    [6] S. Furumi, S. Yokoyama, Akira Otomo and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals”, Appl. Phys. Lett. 82, 16 (2003)
    [7] S. Furumi, S. Yokoyama, Akira Otomo and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device”, Appl. Phys. Lett. 84, 2491 (2004)
    [8] T. H. Lin, Y. J. Chen, C. H. Wu, Andy Y. G. Fuh, J. H. Lin and P. C. Yang “Cholesteric liquid crystal laser with wide tuning capability”, Appl. Phys. Lett. 83, 161120 (2005)
    [9] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser”, Appl. Phys. Lett. 86, 051107 (2005)
    [10] 葛聰智, 碩士論文, 國立成功大學 (2003)
    [11] V. G. Chigrinov, “Liquid crystal devices-Physics and Applications”, Artech House, 1st ed (1999)
    [12] L. Vicari, “Optical Applications of Liquid Crystal”, IOP, 1st ed. (2003)
    [13] S. T. Wu and Andy Y. G. Fuh, “Lasing in photonic crystals based on dye-doped Holographic polymer-dispersed liquid crystal reflection gratings”, Jpn. J. Appl. Phys. 44, 977 (2005)
    [14] X. L. Yang, L. Z. Cai, Q. Liu and H. K. Liu, “Theoretical bandgap modeling of two-dimensional square photonic crystals fabricated by the interference of three noncoplanar laser beams”, J. Opt. Soc. Am. B 21, 1699 (2004)
    [15] M. J. Escuti, J. Qi and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: Threshold behavior and morphology”, Appl. Phys. Lett. 83, 1331 (2003)
    [16] Y. Lin, P. R. Herman and E. L. Abolghasemi, “Proposed single-exposure holographic fabrication of microsphere-type photonic crystals through phase-mask techniques”, J. Appl. Phys. 97, 096102 (2005)
    [17] S. P. Gorkhali, J. Qi and G. P. Crawford, “Electrically switchable mesoscale Penrose quasicrystal structure”, Appl. Phys. Lett. 86, 011110 (2005)
    [18] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Appl. Phys. Lett. 80, 1088 (2002)
    [19] K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa and K. Tada, “Refection mode polymer-dispersed liquid crystal light valve”, Jpn. J. Appl. Phys. 33, 1346 (2005)
    [20] 丁志明, 方冠榮, 吳季珍等編著, “奈米科技-基礎、應用與實作”, 高立圖書 (2005)
    [21] S. Noda and T. Baba, “Roadmap on photonic crystals”, Kluwer Academic Publishers (2003)
    [22] P. N. Prasad, “Nanophotonics”, John Wiley & Sons (2004)
    [23] Y. Liu, X. Hu, D. Zhang, B. Cheng, D. Zhang and Q. Meng, “Subpicosecond optical switching in polystyrene opal”, Appl. Phys. Lett. 86, 151102 (2005)
    [24] S. L. Kuai, G. Bader and P. V. Ashrita, “Tunable electrochromic photonic crystals”, Appl. Phys. Lett. 86, 221110 (2005)
    [25] 羅吉宏, “薄膜科技與應用”, 全華科技圖書 (2004)
    [26] H. B. Sun, S. Matsuo and Hiroaki Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin”, Appl. Phys. Lett. 74, 786 (1999)
    [27] C. S. Keea, S. P. Han, K. B. Yoon, C. G. Choi, and H. K. Sung, S. S. Oh, H. Y. Park, S. Park and H. Schift, “Photonic band gaps and defect modes of polymer photonic crystal slabs”, Appl. Phys. Lett. 86, 051101 (2005)
    [28] O. Toader, T. Y. M. Chan and S. John, “Photonic Band Gap Architectures for Holographic Lithography”, Phys. Rev. Lett. 92, 043905 (2004)
    [29] M. Kim, D. Kim, S. Lee and O’Dae Kwon, “Wet etching fabrication of photonic quantum ring laser”, J. Appl. Phys. 96, 4742 (2004)
    [30] F. Pommereau, L. Legouezigou, S. Hubert, S. Sainson, J. P. Chandouineau, S. Fabre, B. Lombardet, R. Ferrini and R. Houdre, “Fabrication of low loss two-dimensional InP photonic crystals by inductively coupled plasma etching”, J. Appl. Phys. 95, 2242 (2004)
    [31] T. Kawashima, K. Miura, T. Sato and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals”, Appl. Phys. Lett. 77, 2613 (2000)
    [32] S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, “Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion”, J. Lightwave Technol. 17, 1948 (1999)
    [33] M. Maldovan, E. L. Thomas and C. W. Carter, “Layer-by-layer diamond-like woodpile structure with a large photonic band gap”, Appl. Phys. Lett. 84, 362 (2004)
    [34] S. Kennedy, M. J. Brett, O. Toader and S. John, “Fabrication of tetragonal square spiral photonic crystals”, Nano Lett. 2, 59 (2002)
    [35] James J. Raftery, Jr., Aaron J. Danner, Jason C. Lee, and Kent D. Choquettea, “Coherent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface-emitting lasers”, Appl. Phys. Lett. 86, 201104 (2005)
    [36] A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuela, P. Andrew and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice”, Appl. Phys. Lett. 86, 161102 (2005)
    [37] Lu Chena and A. V. Nurmikko, “Fabrication and performance of efficient blue light emitting III-nitride photonic crystals”, Appl. Phys. Lett. 85, 3663 (2004)
    [38] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212 (1999)
    [39] H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakamib, “Photonic-crystal spot-size converter”, Appl. Phys. Lett. 76, 268 (2000)
    [40] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters”, Appl. Phys. Lett. 77, 3902 (2000)
    [41] S. Kim, G. P. Nordin, J. Cai and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure”, Opt. Lett. 28, 2384 (2003)
    [42] L. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur and R. M. De La Rue, “Planar photonic crystal polarization splitter”, Opt. Lett. 29, 1620 (2004)
    [43] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering”, Appl. Phys. Lett. 74, 1370 (1999)
    [44] J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method”, J. Lightwave Technol. 17, 1500 (1999)
    [45] A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals”, Appl. Opt. 40, 2247 (2001)
    [46] J. C. Kinght, “Photonic crystal fibres”, Nature 424, 847 (2003)
    [47] G. R. Fowles, “Introduction to modern optics”, 新智出版社 (1975)
    [48] 陳逸寧, “基礎雷射全像術”, 全華科技圖書 (2005)
    [49] D. Gabor, “Microscopy by reconstructed wavefronts”, Proc. Roy. Soc. ser A 197, 454 (1949)
    [50] L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams”, Opt. Lett. 27, 900 (2002)
    [51] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of Photonic Gap
    in Periodic Dielectric Structures”, Phys. Rev. Lett. 65, 3152 (1990)
    [52] 楊勝翃, 碽士論文, 國立清華大學 (2004)
    [53] 葛德彪, 閆玉波, “電磁波時域有限差分方法”, 西安電子科技大學 (2001)
    [54] S. Y. Lin, V. M. Hietala, Li Wang and E. D. Jones, “Highly dispersive photonic band-gap prism”, Opt. Lett. 21, 1771 (1996)
    [55] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Superprism phenomena in photonic crystals”, Phys. Rev. B 58, R10096 (1998)
    [56] T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals”, Phys. Rev. B 64, 245113 (2001)
    [57] T. Prasad, V. Colvin and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals”, Phys. Rev. B 67, 165103 (2003)
    [58] L. Wu, M. Mazilu, T. Karle and T. F. Krauss, “Superprism phenomena in planar photonic crystals”, J. Quantum Electron. 38, 915 (2002)
    [59] A. Di Falco, C. Conti and G. Assanto, “Three-dimensional superprism effect in photonic crystal slabs”, J. Lightwave Technol. 22, 1748 (2004)
    [60] K. Oya, T. Nakazawa, S. Kittaka, K. Tsunetomo, K. Kintaka, J. Nishii and K. Hirao, “Ultrasmall demultiplexer by use of one-dimensional photonic crystal” Opt. Lett. 30, 192 (2005)
    [61] T. Baba and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect”, J. Quantum Electron. 38, 909 (2002)
    [62] J. Bravo-Abad, T. Ochiai and J. Sanchez-Degesa, “Anomalous refractive properties of a two-dimensional photonic band-gap prism”, Phys. Rev. B 67, 115116 (2003)
    [63] T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism”, Appl. Phys. Lett. 81, 2325 (2002)
    [64] D. Scrymgeour, N. Malkova, S. Kim and V. Gopalan, “Electro-optic control of the superprism effect in photonic crystals”, Appl. Phys. Lett. 82, 3176 (2003)
    [65] N. C. Panoiu, M. Bahl and R. M. Osgood, “Ultrafast optical tuning of a superprism effect in nonlinear photonic crystals”, J. Opt. Soc. Am. B 21, 1500 (2004)
    [66] K. Sakoda, “Optical properties of photonic crystals”, Springer 2nd ed. (2005)

    下載圖示 校內:2008-07-08公開
    校外:2009-07-08公開
    QR CODE