簡易檢索 / 詳目顯示

研究生: 吳政諺
Wu, Zheng-Yan
論文名稱: 考慮鋰離子電池老化程度之定電流充電法的評估
Assessment of a Constant Current Charging Method for Li-ion Batteries with Considering the Degree of Aging
指導教授: 李建興
Lee, Chien-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 鋰離子電池容量衰退定電流快充方法
外文關鍵詞: Li-ion batteries, capacity degradation, constant current, fast charging method
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以現有定電流快充方法大多存在對電池容量快速衰退的問題為出發點,提出一基於電池老化程度之定電流充電法,此法能隨電池容量衰退率的不同來決定相對應的充電電流大小,用以延緩快充對電池容量衰退的影響,進而延長電池壽命。本文內容包括電池老化程度的估測、基於不同老化程度的電流選擇及電池容量衰退的實驗等三項。因此,對某電池而言,可藉由量測電池開路端電壓及瞬間電壓變化來辨別它的老化程度,再利用所提出的基於老化程度電流法來計算新的充電電流值,最後透過容量衰退實驗來驗證與分析該方法對延緩電池老化速率的效益。由容量衰退實驗得知,當全新電池120次循環後,使用基於老化程度電流法之定電流充電法相較於原始定電流充電法可延緩容量衰退率約3.84%,等同於多出40~50的循環次數可使用。另外,當全新電池100次循環後,使用基於老化程度電流法之四階段定電流充電法相較於原始四階段定電流充電法可延緩容量衰退率約2.55%,等同於多出30~40的循環次數可使用。綜言之,基於老化程度的定電流充電法雖有助延緩電池容量衰退,但該法因需降低充電電流的大小,而會犧牲些許充電時間與充電效率。

    In this study, an aging-based constant current charging method for lithium-ion batteries is proposed due to the problem of rapid decay in the constant current fast charging technology. The proposed method is able to determine the corresponding charging current associated with the capacity degradation and delay the impact of fast charging method on battery capacity degradation for extending the lifespan of batteries. This study consists of three parts including estimation of the degree of aging (DOA), selection of the aging-based charging current and experiment of battery capacity degradation. For a battery with an unknown state, its DOA can be estimated by measuring the open-circuit voltage and the instantaneous voltage change. Then the new charging current value can be calculated by the aging-based charging current selection. Finally, the experiment of battery capacity degradation was used to verify and analyze the effect of the method for reducing the aging rate of the battery. Experiment results show that the aging-based charging current was able to extend the capacity degradation of 3.84% as compared to the constant current charging after 120 cycles for brand new batteries, which is equivalent to 40-50 more cycles. Moreover, the four-stage constant current charging (4SCC) method with aging-based schematic was able to extend the capacity degradation of 2.55% after 100 cycles for brand new batteries, which is equivalent to 30-40 more cycles. In conclusion, although the aging-based charging current method may prolong the battery capacity degradation phenomenon, it may sacrifice a little charging time and charging efficiency due to the reduction of charging current.

    摘要 i 誌謝 vi 目錄 vii 表目錄 x 圖目錄 xi 符號說明 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 本論文之貢獻 5 1.5 論文之架構 6 第二章 鋰離子電池之特性與充電方法 8 2.1 鋰離子電池 11 2.2 鋰離子電池之工作原理 12 2.3 鋰離子電池之電池等效電路 14 2.4 鋰離子電池之充電方法 16 第三章 鋰離子電池老化程度之估測方法 21 3.1 鋰離子電池之老化機制 21 3.1.1 鋰離子電池老化原理 21 3.1.2 鋰離子電池之老化因素分析 24 3.2 鋰離子電池老化程度之估測方法 28 3.3 內阻法 29 3.3.1 直流內阻法 32 3.3.2 交流阻抗法 34 3.4 鋰離子電池之EMF特性分析 35 第四章 基於電池容量衰退之定電流的選擇機制 40 4.1 實驗配置 40 4.2 電池容量衰退與內阻關係之建立 42 4.2.1 建立EMF與SOC之關係 42 4.2.2 建立容量衰退與內阻之關係 44 4.3 基於電池老化程度之電流選擇 54 4.3.1 前言 54 4.3.2 基於老化程度之電流選擇機制 55 第五章 鋰離子電池之容量衰退實驗 60 5.1 容量衰退實驗之設置 60 5.2 實驗結果分析與討論 65 5.2.1 定電流充電法之容量衰退結果 66 5.2.2 四階段定電流充電法之容量衰退結果 71 5.2.3 延緩老化速率後所能增加之循環次數的預估 81 第六章 結論與未來展望 87 6.1 結論 87 6.2 未來展望 88 參考文獻 90

    [1] M. Wakihara, "Recent developments in lithium ion batteries," Materials Science and Engineering: R: Reports, vol. 33, issue 4, pp. 109-134, June 2001.
    [2] P. H. Notten, J. O. het Veld, and J. Van Beek, "Boostcharging Li-ion batteries: A challenging new charging concept," Journal of Power Sources, vol. 145, no. 1, pp. 89-94, July 2005.
    [3] L.-R. Chen, "A design of an optimal battery pulse charge system by frequency-varied technique," IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 398-405, February 2007.
    [4] L.-R. Chen, "Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response," IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 480-487, February 2009.
    [5] T. Ikeya, N. Sawada, S. Takagi, J. Murakami, K. Kobayashi, T. Sakabe, E. Kousaka, H. Yoshioka, S. Kato, M. Yamashita, H. Narisoko, Y. Mita, K. Nishiyama, K. Adachi, and K. Ishihara, "Multi-step constant-current charging method for an electric vehicle valve-regulated, lead/acid batteries during night time for load-levelling," Journal of Power Sources, vol. 75, no. 1, pp. 101-107, September 1, 1998.
    [6] C.-H. Lee, M.-Y. Chen, S.-H. Hsu and J.-A. Jiang, "Implementation of an SOC-based four-stage constant current charger for Li-ion batteries," Journal of Energy Storage, vol. 18, pp. 528-537, August 2018.
    [7] 日本資訊技術綜合研究所(Retrieval date: November 2018):http://www.materialsnet.com.tw/DocView.aspx?id=9136.
    [8] EnergyTrend綠能研究(Retrieval date: June 2018):https://www.energytrend.com.tw/research/20180710-14310910.html.
    [9] P. Keil and A. Jossen, "Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells," Journal of Energy Storage, vol. 6, pp. 125-141, May 2016.
    [10] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國93年第62卷第4期。
    [11] 劉峰其,「非線性鋰電池之充放電模型」,國立中央大學電機工程學系,碩士論文,民國99年6月。
    [12] T. Nagamura and K. Tazawa, "lithium ion rechargeable battery," Progress Batteries and Solar Cells, vol. 9, pp. 209-212, 1990.
    [13] X. Hu, S. Li, and H. Peng, "A comparative study of equivalent circuit models for Li-ion batteries," Journal of Power Sources, vol. 198, pp. 359-367, January 2012.
    [14] C.-H. Lee, T.-W. Chang, S.-H. Hsu and J.-A. Jiang, "Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries," Journal of Energy Storage, vol. 21, pp. 301-309, February 2019.
    [15] D. P. Abraham, E. M. Reynolds, E. Sammann, A. N. Jansen, and D. W. Dees, "Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes," Electrochimica Acta, vol. 51, no. 3, pp. 502-510, October 2005.
    [16] 柯泰年,"基於電化學交流阻抗法的鋰離子電池之老化檢測",國立臺灣大學應用力學研究所,碩士論文,民國105年6月。
    [17] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, vol. 147, no. 1-2, pp. 269-281, September 2005.
    [18] F. Leng, C. M. Tan, and M. Pecht, "Effect of temperature on the aging rate of Li ion battery operating above room temperature," Scientic Reports, 5:12967, August 2015.
    [19] M. Ecker, N. Nieto, S. Käbitz, J. Schmalstieg, H. Blanke, A. Warnecke, and D. U. Sauer, "Calendar and cycle life study of Li (NiMnCo) O2-based 18650 lithium-ion batteries," Journal of Power Sources, vol. 248, pp. 839-851, February 2014.
    [20] P. Keil and A. Jossen, "Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells," Journal of Energy Storage, vol. 6, pp. 125-141, 2016.
    [21] 林士人,“鋰電池電量模擬平台之研究” ,國立交通大學電機與控制學程,碩士論文,民國96年7月。
    [22] X.-Z. Wei, W. Xu, and D. Shen, "Internal resistance identification of Li-ion battery and its application in battery life estimation," International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, China, April 11-12, 2009.
    [23] H.-G. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, and P. Birke, "Comparison of several methods for determining the internal resistance of lithium ion cells," Sensors, vol. 10, no. 6, pp. 5604-5625, June 2010.
    [24] 廖健凱,“基於內阻損耗之電池充電系統”,國立彰化師範大學電機工程學系,碩士論文,民國104年7月。
    [25] D. Linden, Handbook of Batteries, Second Edition, McGraw-Hill, New York, 1995.
    [26] H. J. Bergveld, W. S. Kruijt, and P. H. L. Notten, Battery Management Systems, Design by Modelling, Philips Research Book Series, Kluwer Academic Publishers, Boston, USA, 2002.
    [27] V. Pop, H. J. Bergveld, D. Danilov, P. P. L. Regtien, and P. H. L. Notten, "Battery management systems: accurate state-of-charge indication for battery-powered applications," Philips Research Book Series, vol. 9, no. DTR08-9/9, London, 2008.
    [28] S. Abu-Sharkh and D. Doerffel, "Rapid test and non-linear model characterisation of solid-state lithium-ion batteries," Journal of Power Sources, vol. 130, no. 1, pp. 266-274, May 2004.
    [29] 曾宇溢,"小型電動船鋰離子電池管理系統之分析與設計",國立成功大學系統及船舶機電工程學系,碩士論文,民國105年7月。
    [30] Sanyo Lithium-ion Battery Datasheet, (Data of retrieval: May 2019): (https://www.manualslib.com/manual/148274/Sanyo-Lithium-Ion.html#manual)
    [31] A. Abdollahi, N. Raghunathan, X. Han, B. Pattipati, B. Balasingam, K. R. Pattipatu, Y. Bar-Shalom, and B. Card, "Battery health degradation and optimal life management," IEEE AUTOTESTCON, National Harbor, pp. 146-151, USA, November 2015.
    [32] I. J. Fernández, C. F. Calvillo*, A. Sánchez-Miralles and J. Boal, "Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles," Energy, vol. 60, pp. 35-43, October 2013.
    [33] A. A. Abdullah Al-Karakchi, G. Lacey, and G. Putrus, "A method of electric vehicle charging to improve battery life," International Universities Power Engineering Conference (UPEC), pp. 1-3, Stoke on Trent, UK, September 2015.
    [34] D.-R. Kim, J.-W. Kang, T.-H. Eom, J.-M. Kim, J. Lee and C.-Y. Won, "An adaptive rapid charging method for lithium-ion batteries with compensating cell degradation behavior," Applied Sciences, vol. 8, no.8, pp. 1251, July 2018.
    [35] Belt, Jeffrey R., “Battery Test Manual for Plug-In Hybrid Electric Vehicles,” U.S. Department of Energy, Idaho National Laboratory, Idaho Falls, Idaho 83415, March 2008.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE