| 研究生: |
張詠翔 Chang, Yeong-Hsiang |
|---|---|
| 論文名稱: |
具微小化中頻取出之寬頻、高隔離度X/Ka頻段混頻器之研製 Miniature, Broadband, High-isolation Mixers with Compact IF Extraction Circuits for X/Ka-band Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 雙平衡混頻器 、螺旋巴倫 、鏡頻抑制混頻器 、相位補償 、單平衡 、四次諧波混頻器 |
| 外文關鍵詞: | Doubly balanced, Spiral balun, Image rejection mixer, phase calibration, Single balanced, 4× sub-harmonic MMIC mixer, IF extraction circuit |
| 相關次數: | 點閱:93 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先使用TSMC 0.18µm製程,實現雙平衡架構之環形混頻器,本次設計主要將RF螺旋巴倫接地點,改用L-C低通濾波器取代,使巴倫在射頻訊號操作頻帶內其L-C低通濾波器可以將射頻訊號短路至地端,中頻訊號透過L-C低通濾波器所提供的傳輸路徑輸出並提升RF-to-IF隔離度。經過量測後電路的轉換耗損在射頻頻率操作於7-23GHz為10.4-13.4dB,在操作頻帶內RF-to-IF隔離度皆大於40dB,而P1dB為8dBm,晶片面積為0.76 × 0.51mm2。
第二部份延續上章,實作微小化鏡頻抑制混頻器,使用一個新式的雙重巴倫減少Hartley鏡頻混頻器在射頻端的功率分配器的使用,同時提供中頻訊號傳輸路徑。經過量測後電路的轉換耗損在射頻頻率操作於8-21GHz為19-22dB,在操作頻帶內RF-to-IF隔離度皆大於15dB,而P1dB為14dBm,經由相位補償電路所量測之IRR在20GHz時有最佳值34dBc,晶片面積為0.9 × 0.74 mm2。
第三部份使用WIN 0.15μm PHEMT 製程實作單平衡四次諧波混頻器,本次設計將四次諧波混頻器整合中頻取出電路,可提高RF-to-IF隔離度。最後模擬結果電路的轉換耗損在射頻頻率操作於21.-35GHz可達11.3-15.1dB,在操作頻帶內RF-to-IF隔離度皆大於28.8dB,晶片面積為0.67 × 0.75mm2。
The first part of this thesis presents an X-K band MMIC doubly balanced diode ring mixer, which has been created using a TSMC 1P6M CMOS 0.18 µm multilayer structure. An L-C low-pass filter is substituted for the shorted circuit of the spiral balun, allowing for the simultaneous generation of a grounded path for the RF signal as well as a pass path for the IF signal. Therefore, a Marchand spiral balun, which includes a low-pass filter, is proposed to extract the IF signal as well as maintain the balun performance and enhance RF-to-IF isolation. The die size of the proposed compact configuration is less than 0.76 × 0.51 mm2. The measured results indicate that the conversion loss is 10.4—13.4 dB. The RF-to-IF isolation is better than 40 dB, and the P1dB is 8 dBm.
The second part presents a compact broadband single-side band mixer with a dimension of 0.9 × 0.74 mm2. It is designed and fabricated using a TSMC 1P6M CMOS 0.18 µm multilayer structure. The circuit is based on the structure of a Hartley image rejection mixer and a novel dual RF balun, which is used to eliminate the requirement for power divide. The measured results demonstrate that the conversion loss is 19—21 dB, the RF-to-IF isolation is better than 15 dB and the P1dB is 14 dBm. The IRR measurement, which is conducted using phase calibration, is found to be 34 dBc at 20 GHz.
The third part presents a single balanced 4× sub-harmonic MMIC mixer with a compact IF extraction using the 0.15 µm GaAs pHEMT process. The compact IF extraction is performed by a RF band-pass filter with an IF low-pass filter to increase RF-to-IF isolation and reduce the chip size as compared to the conventional SHM. The simulated results demonstrate that a 11.3-15.1 dB conversion loss, a 28.8 dB high RF-to-IF isolation, a 40 dB high LO-to-RF isolation, a 60 dB high 4LO-to-RF isolation over 21-35 GHz RF bandwidth can be achieved. The compact IF extraction circuit supports an IF frequency ranging from DC to 3.1 GHz. The chip size is as small as 0.67 × 0.75 mm2.
[1] J. C. Maxwell, A Treatise on Electricity and Magnetism, Dover, NY., 1954
[2] IEEE Std 802.11a/D7.0-1999, “Part11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification:High-speed Physical Layer in the 5GHz Band.”
[3] D. M. Pozar, Microwave and RF design of wireless systems, New York :John Wiley, 2001.
[4] B. Razavi, RF Microelectronics, Upper Saddle River, NJ :Prentice Hall, 1998
[5] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans.Circuits syst.II, vol. 44, no. 6, pp.428-435, Jun. 1997.
[6] A. R. Behzad, et al., “A 5GHz direction-conversion CMOS transceiver utilizing automatic frequency control for the IEEE 802.11a wireless LAN standard,” IEEE J.Solid-State Circuits, vol. 38, pp. 2209-2220, Dec. 2003.
[7] T. Melly, A. S. Porret, C. C. Ezn, and E. A. Vittoz, “An analysis of flicker noise rejection in low-power and low-vlotage CMOS mixers,” IEEE J.Solid-State Circuits, vol. 36, no.1, pp.102-109. Jan. 2001.
[8] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[9] B. Razavi, Design of analog CMOS integrated circuits, Boston, MA:
McGraw-Hill,2001.
[10] T. H. Chen, K. W. Chang, S. B. T. Bui, L. C. T. Liu, G. S. Dow, and S. Pak, “Broadband single- and double-balanced resistive HEMT monolithic mixers,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 3, pp. 477–484, Mar. 1995.
[11] V. Geffroy, G. D. Astis, and E. Bergeault, “RF mixers using standard digital CMOS 0.35μm process,” in lEEE MTT-S Int. Microw. Symp. Dig., pp. 83- 86, 2001.
[12] C. Song, I. Lo, and O. Boric-Lubecke, “2.4 GHz 0.18μm CMOS passive mixer with integrated baluns,” in lEEE MTT-S Int. Microw. Symp. Dig. pp. 409- 412, 2009.
[13] J. C. Jeong, I. B. Yom, and K. W. Yeom, “An active IF balun for a doubly balanced resistive mixer,” IEEE Microw. Wireless Compon. Lett., vol. 19, no.4, pp. 224-226, Apr. 2009.
[14] S. A. Maas, F. M. Yamada, A. K. Oki, N. Matovelle, and C. Hochuli, “An 18-40 GHz monolithic ring mixer,” in IEEE WIC Symp. Digest, pp. 29-32, 1998.
[15] S. A. Maas and K.W Chang, “A Broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microwave Theory and Tech., vol. 41, no. 12, pp. 2330-2335, Dec. 1993.
[16] Y. I. Ryu, K. W. Kobayashi, and A. K. Oki, “A monolithic broadband doubly balanced EHF HBT star mixer with novel microstrip baluns,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 119-122, 1995.
[17] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 7, pp. 2435 - 2440, July 2005.
[18] C. Y. Chang, C. W. Tang, and D. C. Niu, “Ultra-broad-band doubly balanced star mixers using planar Mouw’s hybrid junction,” IEEE Trans. Microwave Theory and Tech., vol. 41, no. 6, pp. 1077 - 1085, Jun. 2001.
[19] T. Y. Yang, W. R. Lien, C. C. Yang, and H. K. Chiou, “A compact V-band star mixer using compensated overlay capacitors in dual balun,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.7, pp. 537-539, July 2007.
[20] C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microwave Theory and Tech., vol. 56, no. 4, pp. 793 - 802, Apr. 2008.
[21] C. H. Lin, C.M. Lin, J.C. Chiu, T.Y. Tsai and Y.H. Wang, “A Ka-band monolithic doubly-balanced mixer,” in IEEE CSIC Symp. Digest, pp. 69-72, 2006.
[22] I. D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology, London: Institution of Electrical Engineers, 2001.
[23] R. Mongia, I. Bahl and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, Inc., Norwood, MA, 1999.
[24] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith “Modeling of Monolithic RF Spiral balun Transmission-Line,” IEEE Trans. Microwave Theory and Tech., vol. 49, no.2, Feb. 2001
[25] H. K. Chiou, W. R Lian, and T. Y Yang, “A Miniature Q-Band Balanced Sub-Harmonically Pumped Image Rejection Mixer,” IEEE Trans. Microwave Theory and Tech. VOL. 17, NO. 6, Jun. 2007.
[26] S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath “A 60 GHz MMIC pHEMT image reject mixer with integrated ultra wideband IF hybrid and 30 dB of image rejection ratio,” in Proc. Asia-Pacific Microw Conf., Suzhou, China, pp. 1–4, 2005.
[27] M. Varonen, M. Karkkainen, J. Riska, P. Kangaslahti, and K. A. I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 4, pt. 1, pp. 1322–1330, Apr. 2005.
[28] M. Q. Lee, S. M. Moon, K. K. Ryu, D. P. Jang, and I. B. Yom, “Subharmonically pumped image rejection mixer for K-band applications,” in Proc. Gallium Arsenide Appl. Symp. (GAAS), pp. 151–154, Oct. 11–12, 2004.
[29] K. Fujii, M. Adamski, P. Bianco, D. Gunyan, J. Hall, R. Kishimura, C. Lesko, M. Schefer, S. Hessel, H. Morkner, and A. Niedzwiecki, “A 60 GHz MMIC chipset for 1-Gbit/s wireless links,” in IEEE MTT-S Int . Dig., vol. 3, pp. 1725–1728, 2–7, Jun. 2002.
[30] S. E. Gunnarsson, D. Kuylenstierna, H. Zirath, “Analysis and Design of Millimeter-WaveFET-Based Image Reject Mixers,” IEEE Trans. Microwave Theory and Tech.,VOL. 55, NO. 10, Oct. 2007.
[31] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1009–1017, Mar. 2003.
[32] K. S. Ang and I. D. Robertson, “Analysis and design of impedancetransforming planar marchand baluns,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 2, pp. 402–406, Feb. 2001.
[33] M. W. Chapman and S. Raman, “A 60-GHz uniplanar MMIC 4X subharmonic mixer,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 11, pp. 2580–2588, Nov. 2002.
[34] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, “A 94 GHz high performance quadruple sub- harmonic mixer MMIC,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 1249–1252, Jun. 2002.
[35] W. Y. Uhm, W. S. Sul, H. J. Han, S. C. Kim, H. S. Lee, D. An, S. D. Kim, D. H. Shin, H. M. Park, and J. K. Rhee, “A high performance V-band monolithic quadruple sub-harmonic mixer,” in IEEE MTT-S Int. Microwave Symp., vol. 2, pp. 1319–1322, Jun. 2003.
[36] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679-681, Sep. 2007.
[37] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband sub-harmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 95-97, Feb. 2009.
[38] C. M. Lin, J. T. Chang, C. C. Su, S. H. Hung, and Y. H. Wang,”A 16-31GHz miniature quadruple sub-harmonic monolithic mixer with lumped diplexer ,” progress in Electromagnetics Research Letters., vol. 11, no. 2, pp.21-30, 2009.
[39] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,” in IEEE MTT-S Int. Dig., vol. 2, pp. 879–882, 1991.
[40] K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, and C. H. Chen, “Broadband monolithic GaAs-based HEMT diode mixers,” in Proc. Asia-Pacific Microw. Conf., pp. 1135–1138, 2000.
[41] W. C. Chen, S. Y. Chen, J. H. Tsai, T. W. Huang, and H. Wang, “A 38-48 GHz miniature MMIC subharmonic mixer,” in Proc. Gallium Arsenide Other Semicond., Appl. Symp., pp. 437–440, 2005.
[42] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz band applications,” Electron. Lett., vol. 37, no.7, pp. 435–436, Mar. 2001.
[43] S. Raman, F. Rucky, and G. M. Rebeiz, “A high-performance W-Band uniplanar subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 955–962, Jun. 1997.
[44] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.