| 研究生: |
陳彥谷 Chen, Yen-Gu |
|---|---|
| 論文名稱: |
受軸向壓力作用下之撓性磁浮轉軸之動態與控制 Dynamics and Control of Maglev Flexible Rotors under Axial Compression |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 撓性轉軸 、磁浮軸承 、模糊順滑控制 |
| 外文關鍵詞: | Magnetic Bearing, Flexible Rotor, Fuzzy Sliding Mode Control |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討立式撓性轉軸於承受軸向壓力下之系統動態與穩定性分析,並整合磁浮軸承技術以及順滑/模糊順滑控制器之設計,使磁浮撓性轉軸維持漸進穩穩定。當撓性轉軸承受軸向壓力高速運轉時,撓性轉軸會產生挫曲與迴動現象效應。因此考量撓性轉軸之轉動慣量與陀螺效應因素,基於雷立夫樑理論建構轉軸運動方程式,根據迴動頻率方程式與模態振型對撓性轉軸系統動態與穩定性加以分析,並獲得轉軸系統挫曲與迴動之臨界轉速與臨界負載。撓性轉軸匹配磁浮軸承之數學模型可推導出磁浮撓性轉軸系統之宰制方程式,因系統具有奇異擾動之特性,藉由奇異擾動理論可將系統轉換成降階模型,以作為控制器設計之依據。為了使磁浮轉軸系統能克服參數變異以及減低轉軸質量偏心對系統之影響,故本文於控制器設計部份分別採用順滑控制策略以及模糊順滑控制策略。由電腦模擬之結果均展現出設計之順滑控制器與模糊順滑控制器皆具有優越的性能,使系統滿足使用者預先規劃之響應規格。
The analysis of the dynamics and stability of vertical flexible rotors under axial forces is studied in this thesis. In order to keep flexible rotors asymptotically stable, the technology of magnetic bearing and design of sliding mode control/fuzzy sliding mode control loop are incorporated to practically stabilize flexible rotors. The two phenomena, buckling and whirling, are caused as the rotor is spinning at high speed. Take the rotary inertia and gyroscope effect into account, the motion of the flexible rotors is analyzed on the basis of the Rayleigh beam theory. Depending on the whirling frequency equation and mode shape of the flexible rotors, the dynamics and stability of the flexible rotors is investigated, and the critical speed and critical load of the buckling and whirling of rotors system can be obtained. The governing equation of the maglev rotors is derived via the mathematical model of the magnetic bearing and the motion of the flexible rotors. By singular perturbation technology, the system model can be transformed into reduced order model which is the basis of the controller design. For overcoming the uncertainty of system parameter and reducing the effect due to mass eccentricity, the fuzzy sliding mode controller (FSMC) is employed in this thesis. The simulation results show that FSMC has good performance, satisfying the specification of the system response which is designated what users normally expect.
[1] W. J. Macquorn Rankine, “ On the Centrifugal Force of Rotating Shaft, ” The Engineer, Vol. 27, p 249, 1869.
[2] H. H. Jeffcott, “ The Lateral Vibration of Loaded Shafts in the Neighbothood of a Whirling Speed – The Effect of Want of Balance, ” Philosophical Magazine, Vol. 4, p 335-342, 1919.
[3] J. W. Z. Zu, R.P.S. Han, “Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam with General Boundary Conditions,” ASME Journal of Applied Mechanics, Vol. 59, No. 2 , p 197-204, 1992.
[4] C. W. Lee, J. S. Yun, “ Dynamic Analysis of Flexible Rotors Subjected to Torque and Force, ” Journal of Sound and Vibration, Vol. 192, No. 2 , p 439-452, 1996.
[5] N. Khader, “ Stability Analysis for the Dynamic Design of Rotors, ” Journal of Sound and Vibration, Vol. 207, No. 3 , p 287-299, 1997.
[6] S. M. Yang, G. J. Sheu, “ Dynamic Analysis of a Spinning Rayleigh Beam, ” International Journal of Mechanical Sciences, Vol. 47, No. 2 , p 157-169, 2005.
[7] N. O. Myklestad, “ A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams, ” Journal of the Aeronautical Sciences, Vol. 11, No. 2, p 153-162, 1944.
[8] A. C. Lee, Y. P. Shin, “ Identification of the Unbalance Distribution and Dynamic Characteristics of Bearings in Flexible Rotor, ” Proceeding of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science, Vol. 210, No. 5, p 409-428, 1996.
[9] J. W. Zu, Z. Ji, “An Improved Transfer Matrix Method for Steady-State Analysis of Nonlinear Rotor-Bearing Systems, ” Journal of Engineering for Gas Turbines and Power, Vol. 124, No. 2, p 303-310, 2002.
[10] S. C. Hsieh, J. H. Chen, A. C. Lee, “A Modified Transfer Matrix Method for The Coupling Lateral and Torsional Vibrations of Symmetric Rotor-Bearing Systems, ” Journal of Sound and Vibration, Vol. 289, No. 1-2, p 394-333, 2006.
[11] R. L. Ruhl, J. F. Booker, “ A Finite Element Model for Distributed Parameter Turborotor System, ” ASME Journal of Engineering for Industry, Vol. 94, No. 1, p 128-132, 1972.
[12] H. D. Nelson, J. M. McVaugh, “ The Dynamics of Rotor-Bearing Systems Using Finite Elements, ” ASME Journal of Engineering for Industry, Vol. 98, No. 2, p 593-600, 1976.
[13] D.M. Ku, L.W. Chen, “ Stability and Whirl Speeds of Rotating Shaft Under Axial Loads, ” Modal Analysis: the International Journal of Analytical and Experimental Modal Analysis, Vol. 9, No. 2, p111-123, 1994.
[14] L. W. Chen, H. K. Chen, “ Whirl Speeds and Stability of Rotating Shaft Subjected to End Load, ” AIAA Journal, Vol. 33, No. 9, p 1569-1573, 1995.
[15] T. N. Shiau, G. J. Sheu, C. D. Yang, “Vibration and Control of a Flexible Rotor in Magnetic Bearings Using Hybrid Method and Control Theory, ” Transaction of the ASME, Vol. 119, p 178-185, 1997.
[16] H. Masujiro, I. Yoshio, M. Junichi, “ Development of Digitally Controlled Magnetic Bearing, ” Nippon Kikai Gakkai Ronbunshu, Vol. 51, No.465, p1095-1100, 1985.
[17] C. Nasr, J. Constantin, A. Charara, “ Neural networks Control of a Magnetic Levitation System ” Intelligent Engineering Systems Through Artificial Neural Networks, Vol. 12, p. 521-526, 2002.
[18] Y. X. Su, X. Li, Z. Zhou, Y. P. Chen, D. H. Zhang, “ Fuzzy-Immune PID Control for AMB Systems ” Wuhan University Journal of Natural Sciences, Vol. 11, No. 3, p. 637-641, 2006.
[19] N. C. Tsai, C. H. Kuo, R. M. Lee , “Regulation on radial position deviation for vertical AMB Systems, ” Mechanical System and Signal Processing, 2007. ( in press )
[20] A. C. Lee, F. Z. Hsiao, D. Ko “ Analysis and Testing of Magnetic Bearing wish Permanent Magnets for Bias, ” JSME International Journal, Vol.37, No. 4, p774-782, 1994.
[21] Y. H. Fan, A. C. Lee, “ Design of a Permanent/Electromagnetic Magnetic Bearing-Controlled Rotor System, ” Journal of the Franklin Institute, Vol.334B, No. 3, p337-359, 1997.
[22] S. L. Chen, C. T. Hsu, “ Optimal Design of a Three-Pole Active Magnetic Bearing, ” IEEE Transactions on Magnetics, Vol. 38, No. 5, p. 3458-3466, 2002.
[23] C. T. Hsu, S. L. Chen, “ Exact Linearization of a Voltage-Controlled 3-Pole Active Magnetic Bearing System, ” IEEE Transactions on Control System Systems Technology, Vol. 10, No. 5, p618-625, 2002.
[24] N. C. Tsai, S. L. Hsu, “ On Sandwiched Magnetic Bearing Design, ” Electromegnetics, 2007 (Accepted)
[25] M. A. Selman, A. Y. Lee, M. N. Boustany, “ Reduced Order Design of Active Suspension Control, ” Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, p 1038-1043, 1988.
[26] R. F. Amjadi, S. E. Khadem, H. Khaloozadeh, “Position and Velocity Control of a Flexible Joint Robot Manipulator Via a Fuzzy Controller Based on Singular Perturbation Analysis, ” IEEE International Conference on Fuzzy Systems, Vol 1, p 348-351, 2001.
[27] R. Castro-Linares, J. Alvarez-Gallegos, V. Vasquez-Lopez, “Sliding Mode Control and State Estimation for a Class of Nonlinear Singularly Perturbed Systems, ” Dynamics and Control, Vol. 11, No. 1, p 25-46, 2001.
[28] B. S. Chen, C. L. Lee, “ On the Stability Bounds of Singularly Perturbed Systems, ” IEEE Transaction on Automatic Control, Vol. 35, No. 11, p 1265-1270, 1990.
[29] C. K. Kao, A. Sinha, “ Coupled Model Sliding Control of Vibration in Flexible Structure, ” Journal of Guidance, Vol. 15, No. 1, p 65-72, 1992.
[30] L .K. Wong, H. F. Leung, P. K. S. Tam, “A Fuzzy Sliding Controller for Nonlinear Systems, ” EEE Transactions on Industrial Electronics, Vol. 48, No. 1, p 32-37, 2001.
[31] N. C. Tsia, C. W. Chiang, C. H. Kuo, “ Robust Sliding Mode Control for Axial AMB Systems, ” 2004 5th Asian Control Conference, Vol. 1, p 64-66, 2004.