| 研究生: |
宣騰竣 Hsuan, Teng-Chun |
|---|---|
| 論文名稱: |
錫-鋅-銀-鋁-鎵銲錫合金之微結構與拉伸性質之研究 Investigations on the Microstructure and Tensile Properties of Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga Solder Alloy |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 應變速率敏感指數 、破壞型態 、相轉變 、拉伸性質 、無鉛銲錫 |
| 外文關鍵詞: | Fracture type, Phase transition, Strain rate sensitivity exponent, Tensile properties, Lead-free solder |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是探討Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga五元銲錫合金在不同時效、應變速率以及溫度之條件下,對其微觀結構與拉伸性質之影響,藉以瞭解此錫鋅五元銲錫之機械性質與變形行為。
銲錫內部顯微結構顯示,經過澆鑄後,基地呈現針棒狀的富鋅相、樹枝狀的AgZn3化合物與富錫相的組織,而所添加之微量元素Al偏析於富鋅相中,而Ga元素則均勻散佈於銲錫基地中。經過室溫時效後,Al並不會在晶界處析出,即使經過150℃時效1000小時之後仍然不明顯,而Ga經150℃時效後仍均勻的散佈於基地當中。在80℃與150℃時效下,銲錫內部的變化皆比在25℃與-10℃時效下顯著,內部的富鋅相與AgZn3化合物均粗大化,且富錫相發生晶粒成長,進而導致銲錫強度的弱化,使得銲錫在80℃與150℃時效後之抗拉強度與降伏強度均比-10℃及25℃的結果低。銲錫於150℃時效後之強度比80℃高,其主因為富錫相中所含固溶之鋅原子濃度不同所致,而銲錫的拉伸破斷面並不受時效的影響,皆呈延性破壞。
在高溫長時間時效的實驗裡發現,除了富鋅相的粗化外,其中的鋅原子亦傾向朝周圍之AgZn3化合物擴散,並在其表面析出、成長,進而以銀–鋅複合相(precipitated-Zn+AgZn3)的形態存在。經長時間時效後發現,AgZn3化合物的體積逐漸縮小而富鋅相逐漸的析出成長,且彼此的晶體結構與化學組成亦隨著時間而朝向銀–鋅二元系統兩相區(epsilon+eta)的方向移動。
在改變應變速率與溫度的實驗中發現,強度值與應變速率的對數關係顯示,五元銲錫的抗拉強度及降伏強度隨著溫度的增加而呈線性減少,而伸長量則大致上呈線性增加,但在8.33×10-4 s-1的應變速率條件下,伸長量在180℃溫度下卻有明顯的下降,但總伸長量仍有50%。此外,當提高溫度或降低應變速率時,銲錫之破壞表面將呈現大及深之圓錐狀的酒窩組織,於酒窩的底部則發現較完整的變形晶粒。五元銲錫合金之應變硬化指數(n)隨溫度升高而遞減,而應變速率敏感度指數(m)則漸增,約於80℃溫度處出現轉折。而銲錫之m值受溫度的效應相當敏感,其值隨著溫度上升之速率較其它無鉛銲錫快。另外,此五元銲錫之高溫變形機制藉由應力指數與潛變活化能來定義,在較低之應變速率條件下,於150℃溫度之潛變機制與文獻上所提之共晶錫鋅相似,為差排核心擴散的差排爬升機制;而當溫度提高至180℃時,五元銲錫之應力指數與潛變活化能皆下降,此原因推測為銲錫中之固溶原子影響所致,其使潛變機制轉變為溶質所控制的差排滑移。
This study investigated the effect of aging, stain rate and temperature on microstructure and tensile properties of Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (5-e) solder alloy. It is expected to have an in depth understanding to the mechanical property and deformation behavior of this 5-e alloy.
The microstructure of the as-cast Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga solder consists of needle-like Zn-rich and dendritic AgZn3 intermetallic compounds (IMCs) in β-Sn matrix. The addition of Al segregates in Zn-rich phase and Ga uniformly distributes in solder matrix. After aging at room temperature, Al does not segregate at the grain boundary even aging at 150℃ for 1000 hours and Ga still distributes uniformly in solder matrix. The coarsening of Zn-rich, AgZn3 IMCs and β-Sn phase result in decline of tensile and yield strength at 80 and 150℃ than that at -10 and 25℃. Furthermore, the tensile strength at 150℃ is greater than that at 80℃. This was believed to be due to the discrepancy in concentration of dissolved Zn atoms. The fracture morphology of solder was not affected by aging, all fracture surface show ductile fracture mode.
The investigation of long time aging effect at high temperature reveals that Zn atoms prefer to diffuse toward AgZn3 IMC nearby and precipitate and grow on IMC surface. During aging, the volume of IMC in this complex phase (precipitated-Zn+AgZn3) shrinks and Zn-rich phase grow. The crystal structure and chemical composition of these phases also change to the two phase region (epsilon+eta) of the Ag-Zn binary system.
The results of tensile test under different strain rates and temperatures show that the strength of 5-e alloy decreases but elongation increases linearly with temperature increasing. However, while strain rate is 8.33×10-4 s-1, the elongation of solder decays to 50% at 180℃. Besides, while raise the temperature or reduce the strain rate, the conical-like dimples become larger and deeper on the fracture surface and less deformed grains are observed on the bottom of dimples. The strain hardening index (n) of 5-e alloy decreases but strain rate sensitivity index (m) increases with temperature increasing. An inflexion occurs at temperature around 80℃. This value of m is sensitive to temperature, and the slope of m increment is larger than other lead-free solders. Moreover, the high temperature deformation mechanism of 5-e alloy was determined by stress exponent and activation energy for creep. At lowest strain rate condition, the deformation mechanism of 5-e alloy is similar to that of eutectic Sn-Zn alloy from literature. It belongs to the dislocation climb controlled by dislocation core diffusion. At temperature as high as 180℃, the solid-solute atoms cause the reduction of stress exponent and activation energy. Therefore, the creep mechanism of 5-e alloy should be changed to dislocation glide controlled by solute diffusion at 180℃.
1. R. R. Tummala, “SOP: what is it and why? A New Microsystem-integration Technology Paradigm-Moore's Law for System Integration of Miniaturized Convergent Systems of the Next Decade”, Vol. 27, No. 2, pp. 241-249, 2004
2. M. R. Pinnel and W. H. Knausenberger, “Interconnection System Requirement and Modeling”, AT&T Tech. Journal, Vol. 66, No. 4, pp. 45-46, 1987
3. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, No. 5-6, pp. 95-141, 2000
4. S. Jin, “Developing Lead-free Solders: A Challenge and Opportunity”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, p. 13, 1993
5. C. Melton, “Alternative of Lead Bearing Solder Alloys”, Proceeding of the 1993 IEEE International Symposium on Electronics and the Environment, Arlington, USA, pp. 94-97, 1993
6. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, Vol. 9, No. 2, pp. 65-68, 1997
7. J. D. Sigelko and K. N. Subramanian, “Overview of Lead-free Solders”, Advanced Materials & Processes, pp. 47-48, 2000
8. R. J. McCabe and M. E. Fine, “Athermal and Thermally Activated Plastic Flow in Low Melting Temperature Solders at Small Stresses”, Scripta Materialia, Vol. 39, No. 2, pp. 189-195 , 1998
9. F. Hua and J. Glazer, Lead-free Solders for Electronic Assembly, Design and Reliability of Solders and Solder Interconnections, TMS Annual Meeting, pp. 65-74, 1997
10. Technical Reports for the Lead Free Solder Project: Properties Reports: “Room Temperature Tensile Properties of Lead-free Solder Alloys;” Lead Free Solder Project CD-ROM, National Center for Manufacturing Sciences (NCMS), 1998
11. D. Suh, D. W. Kim, P. Liu, H. Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley and H. B. Tejada, “Effect of Ag Content on Fracture Resistance of Sn–Ag–Cu Lead-free Solders under High-strain Rate Conditions”, Materials Science and Engineering A, Vol. 460-461, pp. 595-603, 2007
12. J. Madeni, S. Liu, and T. Siewert, “Casting of Lead-free Solder Specimens with Various Solidification Rates”, ASM-International Conference, Indianapolis, 2001
13. C. Andersson, P. Suna and J. Liu, “Tensile Properties and Microstructural Characterization of Sn–0.7Cu–0.4Co Bulk Solder Alloy for Electronics Applications”, Journal of Alloys and Compounds, Vol. 457, pp. 97-105, 2008
14. S. Kang, “Lead (Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 701-707, 1994
15. K. M. Kumar, V. Kripesh, L. Shen, K. Zeng and A. A. O. Tay, “Nanoindentation Study of Zn-based Pb Free Solders Used in Fine Pitch Interconnect Applications”, Materials Science and Engineering A, Vol. 423, pp. 57-63, 2006
16. Y. S. Kim, K. S. Kim, C. W. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn–Zn–Bi Alloys”, Journal of Alloys and Compounds, Vol. 352, pp. 237-245, 2003
17. S. K. Kang and A. K. Sarkhel, “Lead (Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, pp. 701-708, 1994
18. W. J. Tomlinson and A. Fullylove, “Strength of Tin-based Soldered Joints”, Journal of Materials Science, Vol. 27, pp. 5777-5782, 1992
19. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Applied Physics Letters, Vol. 63, No. 1, pp. 15-17, 1993
20. M. McCormack, G. W. Kammlott, H. S. Chen and S. Jin, “New Lead-free, Sn-Ag-Zn-Cu Solder Alloy with Improved Mechanical Properties”, Applied Physics Letters, Vol. 65, No. 10, pp. 1233-1235, 1994
21. W. Yang, L. E. Felton and R. W. Messler. Jr, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, Journal of Electronic Materials, Vol. 24, No. 10, pp. 1465-1472, 1995
22. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu and In) Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 11, pp. 1229-1235, 1998
23. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu alloys”, Materials Science and Engineering A, Vol. 333, pp. 106-114, 2002
24. S. L. Allen, M. R. Notis, R. R. Chromik and R. P. Vinci, “Microstructural Evolution in Lead-free Solder Alloys: Part II. Directionally Solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”, Journal of Materials Research, Vol. 19, No. 5, pp. 1425-1431, 2004
25. X. Deng, N, Chawla, K. K. Chawla and M. Koopman, “Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation”, Acta Materialia, Vol. 52, pp. 4291-4303, 2004
26. S. L. Allen, M. R. Notis, R. R. Chromik and R. P. Vinic, “Microstructural Evolution in Lead-free Solders Alloys: Part I. Cast Sn-Ag-Cu eutectic”, Journal of Materials Research, Vol. 19, No. 5, pp. 1417-1424, 2004
27. M. Nishiyra, A. NaKayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-free Solders”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1802-1807, 2000
28. M. McCormack, H. S. Chen, G. W. Kamlott and S. Jin, “Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping”, Journal of Electronic Materials, Vol. 26, No. 8, pp. 954-958, 1997
29. J. W. Morris, Jr. and J. L. F. Goldstein, “Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 25, No. 12, pp. 2715-2722, 1994
30. I. Artaki, A. M. Jackson and P. T. Vianco, “Fine Pitch Surface Mount Technology Assembly with Lead-free”, Soldering & Surface Mount Technology, No. 20, pp. 27-32, 1995
31. W. P. Allen and J. H. Perepezko, “Constitution of the Tin–antimony System”, Scripta Metallurgica et Materialia, Vol. 24, pp. 2215-2220, 1990
32. S. Vaynman and M. E. Fine, “Flux Development for Lead-free Solders Containing Zinc”, Journal of Electronic Materials, Vol. 29, No. 10, pp. 1160-1163, 2000
33. T. Taguchi, R. Kato and S. Akita, “Lead-free Interfacial Structures and Their Relationship to Au Plating Including Accelerated Thermal Cycle Testing of Non-leaden BGA Spheres”, Electronic Components and Technology Conference, 2001 Proceedings 51st, Orlando, pp. 675-680, 2001
34. T. Takemoto and M. Miyazaki, “Effect of Excess Temperature Above Liquidus of Lead-free Solders on Wetting Time in a Wetting Balance Test”, Materials Transactions (JIM), Vol. 42, No. 5, pp. 745-750, 2001
35. F. Hua and J. Glazer, Lead-free Solders for Electronic Assembly, Design Reliability of Solders and Solder Interconnections, TMS Annual Meeting, Orlando, USA, pp. 65-73, 1997
36. T. Takemoto and T. Funaki, “Role of Electrode Potential Difference between Lead-free Solder and Copper Base Metal in Wetting”, Materials Transaction (JIM), Vol. 43, No. 8, pp. 1784-1790, 2002
37. K. L. Lin and T. P. Liu, “High-temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, pp. 255-267, 1998
38. 林光隆, 宋振銘, “Sn-Zn系列無鉛銲錫合金研究現況”, 材料會訊, 第十卷, 第一期, pp. 21-33, 2003
39. J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructure and Tensile Properties of Sn–9Zn–xAg Lead-free Solder Alloys”, Scripta Materialia, Vol. 48, pp. 1047-1051, 2003
40. C. W. Huang and K. L. Lin, “Wetting Properties of and Interfacial Reactions in Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au Layer”, Materials Transactions (JIM), Vol. 45, No. 2, pp. 1-7, 2004
41. K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, No. 2, pp. 95-100, 2003
42. S. C. Cheng and K. L. Lin, “The Thermal Property of Lead-free Sn-8.55Zn-1Ag-XAl Solder Alloys and Their Wetting Interaction with Cu”, Journal of Electronic Materials, Vol. 31, No. 9, pp. 940-945, 2002
43. S. C. Cheng and K. L. Lin, “Microstructure and Mechanical Properties of Sn-8.55Zn-1Ag-XAl Solder Alloys”, Materials Transactions (JIM), Vol. 46, No. 1, pp. 42-47, 2005
44. N. S. Liu and K. L. Lin, “The Effect of Ga Content on the Wetting Reaction and Interfacial Morphology Formed between Sn–8.55Zn–0.5Ag–0.1Al–xGa Solders and Cu”, Scripta Materialia, Vol. 54, pp. 219-224, 2006
45. N. S. Liu and K. L. Lin, “Microstructure and Mechanical Properties of Low Ga Content Sn–8.55Zn–0.5Ag–0.1Al–xGa Solders”, Scripta Materialia, Vol. 52, pp. 369-374, 2005
46. K. L. Lin and Y. T. Chiu, ”The Bonding of Sn-Zn-Ag-Al-Ga Lead-free Solder Balls on Cu/Ni-P/Au BGA Substrate”, Proceedings Electronic Components and Technology Conference 1, pp. 692-695, 2005
47. Y. F. Lai, K. L. Lin and Y. S. Lai, “Drop Test Reliability and Solder Joint Failure Modes of Sn-Zn-Ag-Al-Ga Lead-free Solder,” International Materials Research Conference, Chongqing, China, June 9~12, 2008
48. Y. L. Huang, K. L. Lin and D. S. Liu, “Microimpact Test and the Fracture Behavior of Pb-free Solder Joints,” International Materials Research Conference, Chongqing, China, June 9~12, 2008
49. C. W. Huang and K. L. Lin, “Microstructures and Mechanical Properties of Sn–8.55Zn–0.45Al–XAg Solders”, Journal of Material Research, Vol. 18, No. 7, pp. 1528-1534, 2003
50. K. L. Lin, K. I. Chen and P. C. Shi, “A Potential Drop-in Replacement for Eutectic Sn-Pb Solder–The Sn-Zn-Ag-Al-Ga Solder”, Journal of Electronic Materials, Vol. 32, No. 12, pp. 1490-1495, 2003
51. K. I. Chen and K.L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys the Effect of Ag”, Journal of Electronic Materials, Vol. 31, No. 8, pp. 861-867, 2002
52. K. L. Lin, L. H. Wen and T. P. Liu, “The Microstructure of Sn-Zn-Al Solder Alloys”, Journal of Electronics Materials, Vol. 27, No. 3, pp. 97-105, 1998
53. S. P. Yu, M. H. Hon and M. C. Wang, “The Adhesion Strength of a Lead-free Solder Hot-dipped on Copper Substrate”, Journal of Electronics Materials, Vol. 29, No. 2, pp. 237-243, 2000
54. K. I. Chen and K.L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys–The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10, pp. 1111-1116, 2003
55. J. M. Song, N. S. Liu and K. L. Lin,“Microstructures, Thermal and Tensile Properties of Sn-Zn-Ga Alloys”, Materials Transactions (JIM), Vol. 45, No. 3, pp. 776-782, 2004
56. P. A. Swarthmore, Powder diffraction file, Inorganic, International Centre for Diffraction Data, Set 1–8, p. 250, p. 268, 1991; Set 25–26, p. 469, 1984
57. C. Y. Ho, CINDAS Data Series on Material Properties, Vol. Ι-4, Thermal Expansion of Solid, Chapter 7, ASM International, Materials Park, Ohio, USA, pp. 200-201, 1998
58. B. D. Cullity, Elements of X-ray Diffraction, Second Edition, Addison-Wesley, Reading, MA, p. 350, 1978
59. T. Gomez-Acebo, “Termodynamic Assessment of the Ag-Zn System”, Calphad, Vol. 22, No. 2, pp. 203-220, 1998
60. D. R. Gaskell, Introduction to the Thermodynamics of Materials, Third Edition, Taylor & Francis, Philadelphia, USA, pp. 226-227, 1976
61. R. A. Priemon, J. L. Cornillot, D. F. Savini, S. R. Powell, S. L. Kauffman, M. C. Sherlock, S. H. Hart, J. A. Barton, D. Paz and A. L. Urian, Annul Book of ASTM Standards, Section 1, American Society for Testing and Materials, Philadelphia, USA, Vol. 01.01, pp. 322-377, 1984
62. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, pp. 283-303, 1988
63. R. A. Priemon, J. L. Cornillot, D. F. Savini, S. R. Powell, S. L. Kauffman, S. E. Migdon, M. C. Sherlock, S. H. Hart, A. M. Wilson, J. A. Barton and K. W. O’Brien, Annul Book of ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, USA, Vol. 03.01, pp. 241-251, 1983
64. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagram, Second Edition, ASM Internatioal, Metal Park, Ohio, USA, Vol. 1, pp. 167-168, 1987
65. J. L. Murray, “The Al-Zn (Aluminum-Zinc) System”, Bulletin of Alloy Phase Diagrams, Vol. 4, No. 1, pp. 55-73, 1983
66. G. Petzow and G. Effenberg, “Silver-aluminum-zinc.” Ternary Alloys, Vch Verlagsgesellschaft, Weinheim, Germany, Vol. 3, pp. 89-95, 1990
67. T. J. Anderson and I. Ansara, “The Ga-Sn (Gallium-tin) System”, Journal of Phase Equilibria, Vol. 13, No. 2, pp. 181-189, 1992
68. J. Dutkiewicz, Z. Moser, L. Zabdyr, D. D. Gohil, T. G. Chart, I. Ansara and C. Girard, “The Ga-Zn (Gallium-zinc) System”, Bulletin of Alloy Phase Diagrams, Vol. 11, No. 1, pp. 77-82, 1990
69. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Chapman & Hall, U.K., Chapter 1, pp. 44-47, 1992
70. J. M. Song, K. L. Lin, “Behavior of Intermetallics in Liquid Sn–Zn–Ag Solder Alloys”, Journal of Materials Research, Vol. 18, No. 9, pp. 2060-2067, 2003
71. P. A. Swarthmore, Powder Diffraction File, Inorganic, in: International Centre for Diffraction Data, Pennsylvania, USA, Set 25-26, p. 496, 1991
72. P. A. Swarthmore, Powder Diffraction File, Inorganic and Organic, in: International Centre for Diffraction Data, Pennsylvania, USA, Set 1-8, p. 268, 1991
73. P. A. Swarthmore, Powder Diffraction File, International Centre for Diffraction Data, Pennsylvania, USA, Set 1-8, p. 250, p. 268, 1991; Set 25-26, p. 469, 1984
74. W. B. Pearson, Metal Physics and Physical Metallurgy, in: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 4, Pergamon Press, London, U. K., pp. 307-310, 1958
75. T. B. Massalsk and H. W. King, “The Spacing Relationships in H.C.P. ε and η Phases in the Systems CuZn, AgZn;AuZn and AgCd” Acta Metallurgica, Vol. 10, pp. 1171-1181, 1962
76. H. Jones, “Applications of the Bloch Theory to the Study of Alloys and of the Properties of Bismuth”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 147, No. 861, pp. 396-417, 1934
77. J. B. Goodenough, “A Theory of Deviation from Close Packing in Hexagonal Metal Crystals”, Physical Review, Vol. 89, No. 1, pp. 282-294, 1953
78. H. Ohtani, M. Miyashita and K. Ishida, “Thermodynamic Study of Phase Equilibria in the Sn-Ag-Zn System”, Journal of the Japan Institute of Metals, Vol. 63, No. 6, pp. 685-694, 1999
79. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 1, pp. 85-86, 1987
80. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113 and Zn65 in Tin”, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974
81. B. F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, Journal of Applied Physics, Vol. 37, No. 6, pp. 2375-2377, 1966
82. J. W. Yoon, S. W. Kim, J. M. Koo, D. G. Kim and S. B. Jung, “Reliability Investigation and Interfacial Reaction of Ball-grid-array Packages Using the Lead-free Sn-Cu Solder”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1190-1199, 2004
83. J. W. Yoon, S. W. Kim and S. B. Jung, “Interfacial Reaction and Mechanical Properties of Eutectic Sn-0.7Cu/Ni BGA Solder Joints during Isothermal Long-term Aging”, Journal of Alloys and Compounds, Vol. 391, pp. 82-89, 2005
84. R. A. Islam, B. Y. Wu, M. O, Alam, Y. C. Chan and W. Jillek, “Investigations on Microhardness of Sn–Zn Based Lead-free Solder Alloys as Replacement of Sn–Pb Solder”, Journal of Alloys and Compounds, Vol. 392, pp. 149-158, 2005
85. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 1, pp. 964-965, 1986
86. G. E. Dieter, Mechanical Metallurgy, McGraw Hill Book Company, London, UK, pp. 203-207, 1988
87. C. M. Chuang, T. S. Lui and L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder”, Journal of Materials Science, Vol. 37, pp. 191-195, 2002
88. T. B. Massalski and J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 2, pp. 1176-1179, 1987
89. T. B. Massalski and J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 1, pp.26-27, 1987
90. K. Mills, J. R. Davis, J. D. Destefani, D. A. Dieterich, H. J. Frissell, G. M. Crankovic and D. M. Jenkins, Metals Handbook:Fractography, Ninth Edition, Metal Parks, ASM International, Ohio, USA, Vol. 12, pp. 12-22, 1987
91. K. Lange, Handbook of Metal Forming, McGraw-Hill, New York, USA, pp. 3.20-23, 1985
92. P. Adeva, G. Caruana, O. A. Ruano and M. Torralba, “Microstructure and High Temperature Mechanical Properties of Tin”, Materials Science and Engineering A, Vol. 194, pp. 17-23, 1995
93. K. Mills, J. R. Davis, J. D. Destefani, D. A. Dieterich, H. J. Frissell, G. M. Crankovic and D. M. Jenkins, Metals Handbook:Fractography, Ninth Edition, Metal Parks, ASM International, Ohio, USA, Vol. 12, pp. 31-35, 1987
94. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, p. 188, 1988
95. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, p. 453, 1988
96. W. J. Plumbridge and C. R. Gagg, “Effect of Strain Rate and Temperature on the Stress-strain Response of Solder Alloys”, Journal of Materials Science–Materials Electronics, Vol. 10, pp. 461-468, 1999
97. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile Properties of Sn-Ag Based Lead-free Solders and Strain Rate Sensitivity”, Material Science and Engineering A, Vol. 366, pp. 50-55, 2004
98. F. Lang, H. Tanaka, O. Munegata, T. Taguchi and T. Narita, “The Effect of Strain Rate and Temperature on the Tensile Properties of Sn–3.5Ag Solder”, Materials Characterization, Vol. 54, pp. 223-229, 2005
99. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders”, Journal of Electronic Materials, Vol. 26, No. 7, pp.783-790, 1997
100. L. Zhang, A. P. Xian, Z. G. Wang, E. H. Han and J. K. Shang, “Effect of Strain Rate on the Tensile Properties of Sn-9Zn Eutectic Alloy”, Acta Metallurgica Sinica, Vol. 40, No. 11, pp. 1151-1154, 2004
101. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile Properties of Sn-3.5Ag and Sn-3.5Ag-0.75Cu Lead-free Solders”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1854-1857, 2002
102. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, p. 307, p. 450, 1988
103. V. V. Balasubrahmanyam and Y. V. R. K. Prasad, “Hot Deformation Mechanisms in Metastable Beta Titanium Alloy Ti–10V–2Fe–3Al”, Materials Science and Technology, Vol. 17, pp. 1222-1228, 2001
104. J. J. Jonas, C. M. Sellars and W. J. M. Tegart, Metallurgical Reviews, Vol. 4, p. 1, 1969
105. W. J. Plumbridge, “Solders in Electronics”, Journal of Materials Science, Vol. 31, pp. 2501-2514, 1996
106. J. H. L. Pang, Member, IEEE, and B. S. Xiong, “Mechanical Properties for 95.5Sn-3.8Ag-0.7Cu Lead-free Solder Alloy”, IEEE Transaction on Components and Packaging Technologies, Vol. 28, No. 4, pp. 830-840, 2005
107. J. Lau, W. Dauksher and P. Vianco, “Acceleration Models, Constitutive Equations, and Reliability of Lead-free Solders and Joints”, in Proc. IEEE ECTC Conference 03, pp. 229-236
108. A. Schubert and J. H. L. Pang, “Lead-free Solder Mechanical Properties, Testing and Molding”, presented at the 4th Electronics Packing Technology Conference, Lead-free Workshop Notes, 2002
109. J. Yu, D. K. Joo and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Solder Alloys Containing Cu or Bi”, Acta Materialia, Vol. 50, pp. 4315-4324, 2002
110. K. L. Murty, F. M. Haggag and R. K. Mahidara, “Tensile, Creep, and ABI Tests on Sn5%Sb Solder for Mechanical Property Evaluation”, Journal of Electronics Materials, Vol. 26, No. 7, pp. 839-846, 1997
111. A. A. EI- Daly, “Superplasticity in a Relatively Low Melting Point Sn-31.1Pb-3.4Zn Solder Alloy”, Physica Status Solidi (A), Vol. 200, No. 2, pp. 333-338, 2003
112. A. A. EI- Daly, A. M. Abdel-Daiem and M. Yousf, “Creep Deformation of Pb-Sn-Zn Ternary Alloys”, Materials Chemistry and Physiscs, Vol. 74, pp. 43-51, 2002
113. N. Bai, X. Chen and Z. Fang, “Effect of Strain Rate and Temperature on the Tensile Properties of Tin-based Lead-free Solder Alloys”, Journal of Electronic Materials, Vol. 37, No. 7, pp. 1012-1019, 2008
114. C. M. L. Wu and M. L. Huang, “Creep Behavior of Eutectic Sn-Cu Lead-free Solder Alloy”, Journal of Electronic Materials, Vol. 31, No. 5, pp. 442-448, 2002
115. I. Shohji, C. Gagg and W. J. Plumbridge, “Creep Properties of Sn-8Mass%Zn-3Mass%Bi Lead Free Alloy”, Journal of Electronic Materials, Vol. 33, No. 8, pp. 923-927, 2004
116. J. E. Breen and J. Weertman, “Creep of Polycrystalline Tin”, Journal of Metals, Vol. 72, pp. 1230-1234, 1955
117. F. A. Mohamed, K. L. Murty and J. W. Morris, “Harper-dorn Creep in Al, Pb, and Sn”, Metallurgical Transactions, Vol. 4, pp. 935-940, 1973
118. S. H. Suh, J. B. Cohen and J. Weertman, “X-ray Diffraction Study of Subgrain Misorientation during High Temperature Creep of Tin Single Crystals”, Metallurgical Transactions A, Vol. 14A, pp. 117-126, 1983
119. M. D. Mathew, H. Yang, S. Movva and K. L. Murty, “Creep Deformation Characteristics of Tin and Tin-based Electronic Solder Alloys”, Metallurgical and Materials Transactions A, Vol. 36A, pp. 99-105, 2005
120. A. Fawzy, “Effect of Zn Addition, Strain Rate and Deformation Temperature on the Tensile Properties of Sn-3.3wt.% Ag Solder Alloy”, Materials Characterization, Vol. 58, pp. 323-331, 2007
121. R. Mahmudi, A. R. Geranmayeh, H. Noori and M. Shahabi, “Impression Creep of Hypoeutectic Sn-Zn Lead-free Solder Alloys”, Materials Science and Engineering A, Vol. 491, pp.110-116, 2008
122. J. E. Bird, A. K. Mukherjee and J. E. Dorn, “Quantitative Relation between Properties and Microstructure”, Israel University Press, Jerusalem, pp. 255-282, 1969
123. K. L. Murty, Creep and Fracture of Engineering Materials and Structures, J. C. Earthman and F. A. Mohamed, eds., TMS, Warrendale, PA, pp. 739-747, 1997
124. K. L. Murty and O. Kanert, “Dislocation Jump Distances during Creep of Pure and Doped NaCl Single Crystals Using Nuclear Magnetic Resonance Pulse Techniques”, Journal of Applied Physics, Vol. 67, No. 6, pp. 2866-2872, 1990
125. P. J. Fensham, “Self-diffusion in Tin Crystals”, Australian Journal of Scientific Research. Series A, Physical Sciences, Vol. 3, pp. 91-104, 1950
126. J. D. Meakin and E. Klokholm, “Self-diffusion in Tin Single Crystals”, Transactions of the Metallurgical Society of AIME, Vol. 218, pp. 463-466, 1960
127. S. N. G. Chu and J. C. M. Li, “Impression Creep of β-tin Single Crystals, Materials Science and Engineering, Vol. 39, pp. 1-10, 1979
128. O. D. Sherby and P. M. Burke, ”Mechanical Behavior of Crystalline Solids at Elevated Temperature”, Progress in Materials Science, Vol. 13, pp. 323-390, 1968
129. O. D. Sherby and J. Weertman, “Diffusion-controlled Dislocation Creep: a Defense”, Acta Metallurgica, Vol. 27, pp. 387-400, 1979
130. I. Dutta, C. Park and S. Choi, “Impression Creep Characterization of Rapidly Cooled Sn-3.5Ag Solders”, Materials Science and Engineering A, Vol. 379, pp. 401-410, 2004
131. M. L. Huang, L. Wang and C. M. L. Wu, “Creep Behavior of Eutectic Sn-Ag Lead-free Solder Alloy”, Journal of Material Research, Vol. 17, No. 11, pp. 2897-2903, 2002
132. K. L. Murty, “Transitional Creep Mechanisms in Al-5Mg at High Stresses”, Scripta Metallurgica, Vol. 7, pp. 899-903, 1973
133. K. L. Murty, F. A. Mohamed and J. E. Dorn, “Viscous Glide, Dislocation climb and Newtonian Viscous Deformation Mechanisms of High Temperature Creep in Al-3Mg”, Acta Metallurgica, Vol. 20, pp. 1009-1018, 1972
134. T. Reinikainen and J. Kivilahti, “Deformation Behavior of Dilute SnBi (0.5 to 6 at. Pct) Solid Solutions” Metallurgical Materials Transactions A, Vol. 30A, No. 1, pp. 123-132, 1999
135. V. I. Igoshev and J. I. Kleiman, “Creep Phenomena in Lead-free Solders”, Journal of Electronic Materials, Vol. 29, No. 2, pp. 244-250, 2000
136. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113 and Zn65 in Tin”, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974
137. E. A. Brandes and G. B. Brook, Smithell’s Metals Reference Book, Butterworth-heinemann, Seventh Edition, 1992