簡易檢索 / 詳目顯示

研究生: 宣騰竣
Hsuan, Teng-Chun
論文名稱: 錫-鋅-銀-鋁-鎵銲錫合金之微結構與拉伸性質之研究
Investigations on the Microstructure and Tensile Properties of Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga Solder Alloy
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 142
中文關鍵詞: 應變速率敏感指數破壞型態相轉變拉伸性質無鉛銲錫
外文關鍵詞: Fracture type, Phase transition, Strain rate sensitivity exponent, Tensile properties, Lead-free solder
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是探討Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga五元銲錫合金在不同時效、應變速率以及溫度之條件下,對其微觀結構與拉伸性質之影響,藉以瞭解此錫鋅五元銲錫之機械性質與變形行為。
    銲錫內部顯微結構顯示,經過澆鑄後,基地呈現針棒狀的富鋅相、樹枝狀的AgZn3化合物與富錫相的組織,而所添加之微量元素Al偏析於富鋅相中,而Ga元素則均勻散佈於銲錫基地中。經過室溫時效後,Al並不會在晶界處析出,即使經過150℃時效1000小時之後仍然不明顯,而Ga經150℃時效後仍均勻的散佈於基地當中。在80℃與150℃時效下,銲錫內部的變化皆比在25℃與-10℃時效下顯著,內部的富鋅相與AgZn3化合物均粗大化,且富錫相發生晶粒成長,進而導致銲錫強度的弱化,使得銲錫在80℃與150℃時效後之抗拉強度與降伏強度均比-10℃及25℃的結果低。銲錫於150℃時效後之強度比80℃高,其主因為富錫相中所含固溶之鋅原子濃度不同所致,而銲錫的拉伸破斷面並不受時效的影響,皆呈延性破壞。
    在高溫長時間時效的實驗裡發現,除了富鋅相的粗化外,其中的鋅原子亦傾向朝周圍之AgZn3化合物擴散,並在其表面析出、成長,進而以銀–鋅複合相(precipitated-Zn+AgZn3)的形態存在。經長時間時效後發現,AgZn3化合物的體積逐漸縮小而富鋅相逐漸的析出成長,且彼此的晶體結構與化學組成亦隨著時間而朝向銀–鋅二元系統兩相區(epsilon+eta)的方向移動。
    在改變應變速率與溫度的實驗中發現,強度值與應變速率的對數關係顯示,五元銲錫的抗拉強度及降伏強度隨著溫度的增加而呈線性減少,而伸長量則大致上呈線性增加,但在8.33×10-4 s-1的應變速率條件下,伸長量在180℃溫度下卻有明顯的下降,但總伸長量仍有50%。此外,當提高溫度或降低應變速率時,銲錫之破壞表面將呈現大及深之圓錐狀的酒窩組織,於酒窩的底部則發現較完整的變形晶粒。五元銲錫合金之應變硬化指數(n)隨溫度升高而遞減,而應變速率敏感度指數(m)則漸增,約於80℃溫度處出現轉折。而銲錫之m值受溫度的效應相當敏感,其值隨著溫度上升之速率較其它無鉛銲錫快。另外,此五元銲錫之高溫變形機制藉由應力指數與潛變活化能來定義,在較低之應變速率條件下,於150℃溫度之潛變機制與文獻上所提之共晶錫鋅相似,為差排核心擴散的差排爬升機制;而當溫度提高至180℃時,五元銲錫之應力指數與潛變活化能皆下降,此原因推測為銲錫中之固溶原子影響所致,其使潛變機制轉變為溶質所控制的差排滑移。

    This study investigated the effect of aging, stain rate and temperature on microstructure and tensile properties of Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (5-e) solder alloy. It is expected to have an in depth understanding to the mechanical property and deformation behavior of this 5-e alloy.
    The microstructure of the as-cast Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga solder consists of needle-like Zn-rich and dendritic AgZn3 intermetallic compounds (IMCs) in β-Sn matrix. The addition of Al segregates in Zn-rich phase and Ga uniformly distributes in solder matrix. After aging at room temperature, Al does not segregate at the grain boundary even aging at 150℃ for 1000 hours and Ga still distributes uniformly in solder matrix. The coarsening of Zn-rich, AgZn3 IMCs and β-Sn phase result in decline of tensile and yield strength at 80 and 150℃ than that at -10 and 25℃. Furthermore, the tensile strength at 150℃ is greater than that at 80℃. This was believed to be due to the discrepancy in concentration of dissolved Zn atoms. The fracture morphology of solder was not affected by aging, all fracture surface show ductile fracture mode.
    The investigation of long time aging effect at high temperature reveals that Zn atoms prefer to diffuse toward AgZn3 IMC nearby and precipitate and grow on IMC surface. During aging, the volume of IMC in this complex phase (precipitated-Zn+AgZn3) shrinks and Zn-rich phase grow. The crystal structure and chemical composition of these phases also change to the two phase region (epsilon+eta) of the Ag-Zn binary system.
    The results of tensile test under different strain rates and temperatures show that the strength of 5-e alloy decreases but elongation increases linearly with temperature increasing. However, while strain rate is 8.33×10-4 s-1, the elongation of solder decays to 50% at 180℃. Besides, while raise the temperature or reduce the strain rate, the conical-like dimples become larger and deeper on the fracture surface and less deformed grains are observed on the bottom of dimples. The strain hardening index (n) of 5-e alloy decreases but strain rate sensitivity index (m) increases with temperature increasing. An inflexion occurs at temperature around 80℃. This value of m is sensitive to temperature, and the slope of m increment is larger than other lead-free solders. Moreover, the high temperature deformation mechanism of 5-e alloy was determined by stress exponent and activation energy for creep. At lowest strain rate condition, the deformation mechanism of 5-e alloy is similar to that of eutectic Sn-Zn alloy from literature. It belongs to the dislocation climb controlled by dislocation core diffusion. At temperature as high as 180℃, the solid-solute atoms cause the reduction of stress exponent and activation energy. Therefore, the creep mechanism of 5-e alloy should be changed to dislocation glide controlled by solute diffusion at 180℃.

    總目錄 中文要…………………………………………………………………Ι 英文摘要………………………………………………………………ΙΙΙ 誌謝……………………………………………………………………V 總目錄…………………………………………………………………VΙΙ 表目錄…………………………………………………………………IX 圖目錄…………………………………………………………………X 第壹章 簡介………………………………………………………………………1 1-1 電子構裝技術之發展與銲錫材料之重要性………………………1 1-2 無鉛銲錫材料機械性質之比較……………………………………2 1-3 錫鋅五元銲錫合金之發展…………………………………………6 1-4 五元銲錫合金之機械性質比較……………………………………8 1-5 研究目的………………………………………………………… 13 第貳章 實驗方法與步驟…………………………………………… 14 2-1 實驗構想………………………………………………………… 14 2-2 錫鋅五元銲錫合金之製備……………………………………… 14 2-3 時效熱處理實驗………………………………………………… 14 2-3-1 錫鋅五元銲錫合金之顯微組織觀察………………………… 17 2-3-2 錫鋅五元銲錫合金之相鑑定………………………………… 17 2-3-3 錫鋅五元銲錫合金之晶體結構分析………………………… 17 2-3-4 錫鋅五元銲錫合金之熱力學分析…………………………… 18 2-4 機械拉伸測試實驗……………………………………………… 20 2-4-1錫鋅五元銲錫合金之機械性質分析……………………… 20 2-5硬度實驗……………………………………………………… 24 第參章 結果與討論………………………………………………… 27 3-1 時效熱處理對錫鋅五元銲錫合金微結構之影響……………… 27 3-1-1 微觀組織分析………………………………………………… 27 3-1-2 晶體結構分析………………………………………………… 53 3-1-3 熱力學化學勢分析…………………………………………… 60 3-2 時效熱處理對錫鋅五元銲錫合金拉伸機械性質之分析…… 66 3-2-1 拉伸機械性質之分析…………………………………… 66 3-2-2 銲錫破壞型態之分析…………………………………… 75 3-3 溫度及應變速率對錫鋅五元銲錫合金拉伸機械性質之分析 85 3-3-1 應變速率的影響………………………………………… 85 3-3-1-1 機械性質分析…………………………………… 85 3-3-2 溫度的影響……………………………………………… 91 3-3-2-1 機械性質分析……………………………………………… 91 3-3-3 破壞表面形態與破壞行為之分析…………………………… 94 3-3-4 應變硬化指數(n)與應變速率敏感指數(m)分析………101 3-3-5 錫鋅五元銲錫合金之高溫變形機制……………………105 第肆章 結論………………………………………………………… 121 參考文獻………………………………………………………………123 附錄……………………………………………………………………138 表目錄 表1-1 共晶錫鉛與數種無鉛銲錫之機械性質整理……………………4 表3-1 為ε-AgZn3化合物與Zn之晶系與晶格參數……………40 表3-2 為圖3-12點1至5之EDS分析結果………………………………47 表3-3 ε-AgZn3化合物於150℃下不同時效時間之WDS分析 (at%)……………………………………………………………57 表3-4 為Ag與Zn分別在ε-AgZn3與η-Zn中之部分莫爾 自由能(kJ/mol)……………………………………………… 63 表3-5 錫鋅五元銲錫於不同時效條件下之最大抗拉強度(MPa)……70 表3-6 錫鋅五元銲錫於不同時效條件下之降伏強度(MPa)…………71 表3-7 錫鋅五元銲錫於不同時效條件下之應變(%)…………………72 表3-8 錫鋅五元銲錫與其他銲錫合金之應變硬化指數(n)……… 103 表3-9 錫鋅五元銲錫機械性質之總整理……………………………104 表3-10 錫鋅五元銲錫與其他銲錫合金之應變速率敏感指數(m)…106 表3-11 錫鋅五元銲錫在不同溫度及應變速率下之Q/m值 (kJ/mol)…………………………………………………… 112 表3-12 為純錫、共晶錫鉛及各種無鉛銲錫之應力指數n與潛變 或變形活化能Q之整理………………………………………113 圖目錄 圖1-1 一般IC元件在晶片構裝與基板構裝之過程……………………3 圖1-2 不同Ag含量對Sn-Zn系銲錫機械性質的影響………………… 9 圖1-3 不同Al含量對Sn-Zn系銲錫機械性質的影響…………………11 圖1-4 不同Ga含量對Sn-Zn系銲錫機械性質的影響…………………12 圖2-1 實驗流程圖…………………………………………………… 15 圖2-2 澆鑄示意圖…………………………………………………… 16 圖2-3 拉伸試片尺寸………………………………………………… 21 圖2-4 銲錫拉伸曲線示意圖………………………………………… 23 圖2-5 硬度量測示意圖……………………………………………… 26 圖3-1 錫鋅五元銲錫經澆鑄冷卻後之微觀組織…………………… 28 圖3-2 錫鋅五元銲錫經澆鑄冷卻後,微觀組織之面掃瞄分析 (EPMA)………………………………………………………… 29 圖3-3 錫鋅五元銲錫於不同溫度下,時效75小時後之XRD (曲線a為時效前的XRD)……………………………………… 30 圖3-4 錫鋅五元銲錫於不同溫度下,時效1000小時後之XRD………32 圖3-5 錫鋅五元銲錫在不同溫度下經過75小時熱處理後之微觀 組織(a)-10℃,(b)25℃,(c)80℃,(d)150℃…………… 33 圖3-6 錫鋅五元銲錫在不同溫度下經過150小時熱處理後之微觀 組織 (a)-10℃,(b)25℃,(c)80℃,(d)150℃……………34 圖3-7 錫鋅五元銲錫在不同溫度下經過300小時熱處理後之微觀 組織 (a) -10℃,(b) 25℃,(c) 80℃,(d) 150℃………35 圖3-8 錫鋅五元銲錫在不同溫度下經過1000小時熱處理後之微觀 組織 (a) -10℃,(b) 25℃,(c) 80℃,(d) 150℃………36 圖3-9 錫鋅五元銲錫經80℃、1000小時時效後之面掃瞄分析 (EPMA)………………………………………………………… 37 圖3-10 錫鋅五元銲錫經150℃、1000小時時效後之面掃瞄分析 (EPMA)…………………………………………………………38 圖3-11 錫鋅五元銲錫在不同溫度下經過2500小時熱處理後之 微觀組織 (a)-10℃,(b)80℃,(c)150℃…………………41 圖3-12 錫鋅五元銲錫在不同溫度下經過9000小時熱處理後之 微觀組織 (a)-10℃,(b)80℃,(c)150℃…………………42 圖3-13 在錫鋅五元銲錫中,銀鋅化合物與富鋅相於150℃時效下 之形態變化 (a)0小時,(b)75小時,(c)150小時…………44 圖3-13 (續) (d)300小時,(e)1000小時……………………………45 圖3-14 銀鋅化合物與富鋅相經150℃時效後之顯微結構 (a)75小時,(b)1000小時……………………………………46 圖3-15 銀鋅化合物經150℃、1000小時後之元素面掃瞄分析 (EPMA)…………………………………………………………49 圖3-16 錫鋅五元銲錫表面經過Ga+離子束蝕刻後之微觀結構(線 ab為欲向下蝕刻之位置,箭頭方向則為觀察方向)……… 50 圖3-17 銲錫經FIB蝕刻後,銀鋅化合物與富鋅相於銲錫內部 之形態…………………………………………………………51 圖3-18 ε-AgZn3化合物與富鋅相(eta-Zn)之消長示意圖, (a)時效前,(b)時效初期,(c)時效中期,(d)時效末期…52 圖3-19 錫鋅五元銲錫在150℃溫度分別時效0、75、150、300及 1000小時的XRD圖譜………………………………………… 54 圖3-20 錫鋅五元銲錫中(a) β-Sn、(b) η-Zn及(c) ε-AgZn3 化合物經過時效後之c/a軸比……………………………… 55 圖3-21 (a)六方緊密堆積結構之第一布里淵區示意圖,由20個 對稱面所構成,(b)與(c)分別為(a)的垂直及水平方向之 剖面圖…………………………………………………………59 圖3-22 在溫度150℃下,銀-鋅二元系統中ε-AgZn3化合物及 η-Zn之莫爾自由能 (a) XZn:0 ~ 1.0,(b) XZn:0.85 ~1.00………………………………………………………… 61 圖3-23 銀-鋅二元系統相圖………………………………………… 62 圖3-24 在時效過程中,ε-AgZn3化合物與η-Zn相之間界面 分解過程之示意圖……………………………………………65 圖3-25 錫鋅五元銲錫在不同時效溫度下,其最大抗拉強度 (UTS, MPa)隨著時效時間的變化情形………………………67 圖3-26 錫鋅五元銲錫在不同時效溫度下,其應變量(Strain, %) 隨著時效時間的變化情形……………………………………69 圖3-27 錫鋅五元銲錫在不同時效溫度,其維氏硬度值(Hv) 隨著時效時間的變化情形……………………………………73 圖3-28 錫鋅五元銲錫於時效前的拉伸破斷處之表面形態…………76 圖3-29 錫鋅五元銲錫經過時效75小時後,拉伸破斷處之 表面形態(a)-10℃,(b)25℃,(c)80℃,(d)150℃………77 圖3-30 錫鋅五元銲錫經過時效1000小時後,拉伸破斷處之 表面形態(a)-10℃,(b)25℃,(c)80℃,(d)150℃………78 圖3-31 錫鋅五元銲錫在150℃溫度下經過75小時時效後,其 拉伸破斷處之橫截面觀察圖(b)為圖(a)中白色框區域之 放大……………………………………………………………79 圖3-32 錫鋅五元銲錫在150℃溫度下經過300小時時效後,其 拉伸破斷處之橫截面觀察 圖(b)為圖(a)中黑色框區域 之放大…………………………………………………………80 圖3-33 錫鋅五元銲錫在150℃溫度下經過1000小時時效後,其 拉伸破斷處之橫截面觀察 圖(b)為圖(a)中白色框區域 之放大…………………………………………………………82 圖3-34 錫鋅五元銲錫合金(時效前)在不同應變量下,表面裂縫 傳播的情形,應變量為 (a) 9.9%,(b) 18.5% ………… 83 圖3-35 試片表面裂縫處之微觀形態 (a)為圖3-33中A區之放大, (b)為圖3-33中B區之放大……………………………………84 圖3-36 錫鋅五元銲錫在不同應變速率下之工程應力應變曲 (a) 25℃,(b) 80℃…………………………………………86 圖3-36 (續) (c) 150℃,(d) 180℃……………………………… 87 圖3-37 錫鋅五元銲錫在不同應變速率下之真實應力應變曲線 (a) 25℃,(b) 80℃…………………………………………88 圖3-37 (續) (c) 150℃,(d) 180℃……………………………… 89 圖3-38 於不同溫度下,應變速率對錫鋅五元銲錫機械性質之 影響(a)抗拉強度,(b)降伏強度,(c)伸長量…………… 90 圖3-39 於不同應變速率下,溫度對錫鋅五元銲錫機械性質之 影響(a)抗拉強度,(b)降伏強度,(c)伸長量…………… 92 圖3-40 錫鋅五元銲錫在180oC與 8.33×10-4 s-1之條件下, (a)測試前 (b)測試後,銲錫內部之顯微結構…………… 93 圖3-41 錫鋅五元銲錫於不同拉伸條件下之破斷表面型態…………95 (a) 25℃, 8.33×10-4 s-1 (b) 25℃, 8.33×10-3 s-1 (c) 25℃, 3.33×10-2 s-1 (d) 80℃, 8.33×10-4 s-1 (e) 80℃, 8.33×10-3 s-1 (f) 80℃, 3.33×10-2 s-1 (g) 150℃, 8.33×10-4 s-1 (h) 150℃, 8.33×10-3 s-1 (i) 150℃, 3.33×10-2 s-1 (j) 180℃, 8.33×10-4 s-1 (k) 180℃, 8.33×10-3 s-1 (l) 180℃, 3.33×10-2 s-1 圖3-42 錫鋅五元銲錫經拉伸測試後,其破斷表面形態之放大圖 (a) 80℃, 8.33×10-4 s-1 (b) 80℃, 3.33×10-2 s-1… 97 圖3-43 錫鋅五元銲錫經拉伸測試後,其破斷表面形態之放大圖 (a) 25℃, 8.33×10-3 s-1 (b) 180℃, 8.33×10-3 s-1…98 圖3-44 (a)在150℃溫度下,錫鋅五元銲錫經過拉伸測試後 (8.33×10-4 s-1)其試片破斷表面之顯微結構, (b)為圖(a)中虛線區域之放大………………………………99 圖3-45 錫鋅五元銲錫之應變硬化指數(n)與應變速率敏感指數(m) 隨著溫度而變化之情形…………………………………… 102 圖3-46 共晶錫鉛與其它無鉛銲錫之m值隨溫度變化之情形………107 圖3-47 錫鋅五元銲錫之應力與應變速率在不同溫度下之關係… 109 圖3-48 錫鋅五元銲錫在固定應變及應變速率條件下,對ln與 1/T作圖之結果(Q值單位:kJ/mol)……………………… 111 附錄……………………………………………………………………138

    1. R. R. Tummala, “SOP: what is it and why? A New Microsystem-integration Technology Paradigm-Moore's Law for System Integration of Miniaturized Convergent Systems of the Next Decade”, Vol. 27, No. 2, pp. 241-249, 2004
    2. M. R. Pinnel and W. H. Knausenberger, “Interconnection System Requirement and Modeling”, AT&T Tech. Journal, Vol. 66, No. 4, pp. 45-46, 1987
    3. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, No. 5-6, pp. 95-141, 2000
    4. S. Jin, “Developing Lead-free Solders: A Challenge and Opportunity”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, p. 13, 1993
    5. C. Melton, “Alternative of Lead Bearing Solder Alloys”, Proceeding of the 1993 IEEE International Symposium on Electronics and the Environment, Arlington, USA, pp. 94-97, 1993
    6. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, Vol. 9, No. 2, pp. 65-68, 1997
    7. J. D. Sigelko and K. N. Subramanian, “Overview of Lead-free Solders”, Advanced Materials & Processes, pp. 47-48, 2000
    8. R. J. McCabe and M. E. Fine, “Athermal and Thermally Activated Plastic Flow in Low Melting Temperature Solders at Small Stresses”, Scripta Materialia, Vol. 39, No. 2, pp. 189-195 , 1998
    9. F. Hua and J. Glazer, Lead-free Solders for Electronic Assembly, Design and Reliability of Solders and Solder Interconnections, TMS Annual Meeting, pp. 65-74, 1997
    10. Technical Reports for the Lead Free Solder Project: Properties Reports: “Room Temperature Tensile Properties of Lead-free Solder Alloys;” Lead Free Solder Project CD-ROM, National Center for Manufacturing Sciences (NCMS), 1998
    11. D. Suh, D. W. Kim, P. Liu, H. Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley and H. B. Tejada, “Effect of Ag Content on Fracture Resistance of Sn–Ag–Cu Lead-free Solders under High-strain Rate Conditions”, Materials Science and Engineering A, Vol. 460-461, pp. 595-603, 2007
    12. J. Madeni, S. Liu, and T. Siewert, “Casting of Lead-free Solder Specimens with Various Solidification Rates”, ASM-International Conference, Indianapolis, 2001
    13. C. Andersson, P. Suna and J. Liu, “Tensile Properties and Microstructural Characterization of Sn–0.7Cu–0.4Co Bulk Solder Alloy for Electronics Applications”, Journal of Alloys and Compounds, Vol. 457, pp. 97-105, 2008
    14. S. Kang, “Lead (Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 701-707, 1994
    15. K. M. Kumar, V. Kripesh, L. Shen, K. Zeng and A. A. O. Tay, “Nanoindentation Study of Zn-based Pb Free Solders Used in Fine Pitch Interconnect Applications”, Materials Science and Engineering A, Vol. 423, pp. 57-63, 2006
    16. Y. S. Kim, K. S. Kim, C. W. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn–Zn–Bi Alloys”, Journal of Alloys and Compounds, Vol. 352, pp. 237-245, 2003
    17. S. K. Kang and A. K. Sarkhel, “Lead (Pb)-free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, pp. 701-708, 1994
    18. W. J. Tomlinson and A. Fullylove, “Strength of Tin-based Soldered Joints”, Journal of Materials Science, Vol. 27, pp. 5777-5782, 1992
    19. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Applied Physics Letters, Vol. 63, No. 1, pp. 15-17, 1993
    20. M. McCormack, G. W. Kammlott, H. S. Chen and S. Jin, “New Lead-free, Sn-Ag-Zn-Cu Solder Alloy with Improved Mechanical Properties”, Applied Physics Letters, Vol. 65, No. 10, pp. 1233-1235, 1994
    21. W. Yang, L. E. Felton and R. W. Messler. Jr, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, Journal of Electronic Materials, Vol. 24, No. 10, pp. 1465-1472, 1995
    22. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu and In) Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 11, pp. 1229-1235, 1998
    23. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu alloys”, Materials Science and Engineering A, Vol. 333, pp. 106-114, 2002
    24. S. L. Allen, M. R. Notis, R. R. Chromik and R. P. Vinci, “Microstructural Evolution in Lead-free Solder Alloys: Part II. Directionally Solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”, Journal of Materials Research, Vol. 19, No. 5, pp. 1425-1431, 2004
    25. X. Deng, N, Chawla, K. K. Chawla and M. Koopman, “Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation”, Acta Materialia, Vol. 52, pp. 4291-4303, 2004
    26. S. L. Allen, M. R. Notis, R. R. Chromik and R. P. Vinic, “Microstructural Evolution in Lead-free Solders Alloys: Part I. Cast Sn-Ag-Cu eutectic”, Journal of Materials Research, Vol. 19, No. 5, pp. 1417-1424, 2004
    27. M. Nishiyra, A. NaKayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-free Solders”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1802-1807, 2000
    28. M. McCormack, H. S. Chen, G. W. Kamlott and S. Jin, “Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping”, Journal of Electronic Materials, Vol. 26, No. 8, pp. 954-958, 1997
    29. J. W. Morris, Jr. and J. L. F. Goldstein, “Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 25, No. 12, pp. 2715-2722, 1994
    30. I. Artaki, A. M. Jackson and P. T. Vianco, “Fine Pitch Surface Mount Technology Assembly with Lead-free”, Soldering & Surface Mount Technology, No. 20, pp. 27-32, 1995
    31. W. P. Allen and J. H. Perepezko, “Constitution of the Tin–antimony System”, Scripta Metallurgica et Materialia, Vol. 24, pp. 2215-2220, 1990
    32. S. Vaynman and M. E. Fine, “Flux Development for Lead-free Solders Containing Zinc”, Journal of Electronic Materials, Vol. 29, No. 10, pp. 1160-1163, 2000
    33. T. Taguchi, R. Kato and S. Akita, “Lead-free Interfacial Structures and Their Relationship to Au Plating Including Accelerated Thermal Cycle Testing of Non-leaden BGA Spheres”, Electronic Components and Technology Conference, 2001 Proceedings 51st, Orlando, pp. 675-680, 2001
    34. T. Takemoto and M. Miyazaki, “Effect of Excess Temperature Above Liquidus of Lead-free Solders on Wetting Time in a Wetting Balance Test”, Materials Transactions (JIM), Vol. 42, No. 5, pp. 745-750, 2001
    35. F. Hua and J. Glazer, Lead-free Solders for Electronic Assembly, Design Reliability of Solders and Solder Interconnections, TMS Annual Meeting, Orlando, USA, pp. 65-73, 1997
    36. T. Takemoto and T. Funaki, “Role of Electrode Potential Difference between Lead-free Solder and Copper Base Metal in Wetting”, Materials Transaction (JIM), Vol. 43, No. 8, pp. 1784-1790, 2002
    37. K. L. Lin and T. P. Liu, “High-temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, pp. 255-267, 1998
    38. 林光隆, 宋振銘, “Sn-Zn系列無鉛銲錫合金研究現況”, 材料會訊, 第十卷, 第一期, pp. 21-33, 2003
    39. J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructure and Tensile Properties of Sn–9Zn–xAg Lead-free Solder Alloys”, Scripta Materialia, Vol. 48, pp. 1047-1051, 2003
    40. C. W. Huang and K. L. Lin, “Wetting Properties of and Interfacial Reactions in Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au Layer”, Materials Transactions (JIM), Vol. 45, No. 2, pp. 1-7, 2004
    41. K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, No. 2, pp. 95-100, 2003
    42. S. C. Cheng and K. L. Lin, “The Thermal Property of Lead-free Sn-8.55Zn-1Ag-XAl Solder Alloys and Their Wetting Interaction with Cu”, Journal of Electronic Materials, Vol. 31, No. 9, pp. 940-945, 2002
    43. S. C. Cheng and K. L. Lin, “Microstructure and Mechanical Properties of Sn-8.55Zn-1Ag-XAl Solder Alloys”, Materials Transactions (JIM), Vol. 46, No. 1, pp. 42-47, 2005
    44. N. S. Liu and K. L. Lin, “The Effect of Ga Content on the Wetting Reaction and Interfacial Morphology Formed between Sn–8.55Zn–0.5Ag–0.1Al–xGa Solders and Cu”, Scripta Materialia, Vol. 54, pp. 219-224, 2006
    45. N. S. Liu and K. L. Lin, “Microstructure and Mechanical Properties of Low Ga Content Sn–8.55Zn–0.5Ag–0.1Al–xGa Solders”, Scripta Materialia, Vol. 52, pp. 369-374, 2005
    46. K. L. Lin and Y. T. Chiu, ”The Bonding of Sn-Zn-Ag-Al-Ga Lead-free Solder Balls on Cu/Ni-P/Au BGA Substrate”, Proceedings Electronic Components and Technology Conference 1, pp. 692-695, 2005
    47. Y. F. Lai, K. L. Lin and Y. S. Lai, “Drop Test Reliability and Solder Joint Failure Modes of Sn-Zn-Ag-Al-Ga Lead-free Solder,” International Materials Research Conference, Chongqing, China, June 9~12, 2008
    48. Y. L. Huang, K. L. Lin and D. S. Liu, “Microimpact Test and the Fracture Behavior of Pb-free Solder Joints,” International Materials Research Conference, Chongqing, China, June 9~12, 2008
    49. C. W. Huang and K. L. Lin, “Microstructures and Mechanical Properties of Sn–8.55Zn–0.45Al–XAg Solders”, Journal of Material Research, Vol. 18, No. 7, pp. 1528-1534, 2003
    50. K. L. Lin, K. I. Chen and P. C. Shi, “A Potential Drop-in Replacement for Eutectic Sn-Pb Solder–The Sn-Zn-Ag-Al-Ga Solder”, Journal of Electronic Materials, Vol. 32, No. 12, pp. 1490-1495, 2003
    51. K. I. Chen and K.L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys the Effect of Ag”, Journal of Electronic Materials, Vol. 31, No. 8, pp. 861-867, 2002
    52. K. L. Lin, L. H. Wen and T. P. Liu, “The Microstructure of Sn-Zn-Al Solder Alloys”, Journal of Electronics Materials, Vol. 27, No. 3, pp. 97-105, 1998
    53. S. P. Yu, M. H. Hon and M. C. Wang, “The Adhesion Strength of a Lead-free Solder Hot-dipped on Copper Substrate”, Journal of Electronics Materials, Vol. 29, No. 2, pp. 237-243, 2000
    54. K. I. Chen and K.L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys–The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10, pp. 1111-1116, 2003
    55. J. M. Song, N. S. Liu and K. L. Lin,“Microstructures, Thermal and Tensile Properties of Sn-Zn-Ga Alloys”, Materials Transactions (JIM), Vol. 45, No. 3, pp. 776-782, 2004
    56. P. A. Swarthmore, Powder diffraction file, Inorganic, International Centre for Diffraction Data, Set 1–8, p. 250, p. 268, 1991; Set 25–26, p. 469, 1984
    57. C. Y. Ho, CINDAS Data Series on Material Properties, Vol. Ι-4, Thermal Expansion of Solid, Chapter 7, ASM International, Materials Park, Ohio, USA, pp. 200-201, 1998
    58. B. D. Cullity, Elements of X-ray Diffraction, Second Edition, Addison-Wesley, Reading, MA, p. 350, 1978
    59. T. Gomez-Acebo, “Termodynamic Assessment of the Ag-Zn System”, Calphad, Vol. 22, No. 2, pp. 203-220, 1998
    60. D. R. Gaskell, Introduction to the Thermodynamics of Materials, Third Edition, Taylor & Francis, Philadelphia, USA, pp. 226-227, 1976
    61. R. A. Priemon, J. L. Cornillot, D. F. Savini, S. R. Powell, S. L. Kauffman, M. C. Sherlock, S. H. Hart, J. A. Barton, D. Paz and A. L. Urian, Annul Book of ASTM Standards, Section 1, American Society for Testing and Materials, Philadelphia, USA, Vol. 01.01, pp. 322-377, 1984
    62. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, pp. 283-303, 1988
    63. R. A. Priemon, J. L. Cornillot, D. F. Savini, S. R. Powell, S. L. Kauffman, S. E. Migdon, M. C. Sherlock, S. H. Hart, A. M. Wilson, J. A. Barton and K. W. O’Brien, Annul Book of ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, USA, Vol. 03.01, pp. 241-251, 1983
    64. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagram, Second Edition, ASM Internatioal, Metal Park, Ohio, USA, Vol. 1, pp. 167-168, 1987
    65. J. L. Murray, “The Al-Zn (Aluminum-Zinc) System”, Bulletin of Alloy Phase Diagrams, Vol. 4, No. 1, pp. 55-73, 1983
    66. G. Petzow and G. Effenberg, “Silver-aluminum-zinc.” Ternary Alloys, Vch Verlagsgesellschaft, Weinheim, Germany, Vol. 3, pp. 89-95, 1990
    67. T. J. Anderson and I. Ansara, “The Ga-Sn (Gallium-tin) System”, Journal of Phase Equilibria, Vol. 13, No. 2, pp. 181-189, 1992
    68. J. Dutkiewicz, Z. Moser, L. Zabdyr, D. D. Gohil, T. G. Chart, I. Ansara and C. Girard, “The Ga-Zn (Gallium-zinc) System”, Bulletin of Alloy Phase Diagrams, Vol. 11, No. 1, pp. 77-82, 1990
    69. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Chapman & Hall, U.K., Chapter 1, pp. 44-47, 1992
    70. J. M. Song, K. L. Lin, “Behavior of Intermetallics in Liquid Sn–Zn–Ag Solder Alloys”, Journal of Materials Research, Vol. 18, No. 9, pp. 2060-2067, 2003
    71. P. A. Swarthmore, Powder Diffraction File, Inorganic, in: International Centre for Diffraction Data, Pennsylvania, USA, Set 25-26, p. 496, 1991
    72. P. A. Swarthmore, Powder Diffraction File, Inorganic and Organic, in: International Centre for Diffraction Data, Pennsylvania, USA, Set 1-8, p. 268, 1991
    73. P. A. Swarthmore, Powder Diffraction File, International Centre for Diffraction Data, Pennsylvania, USA, Set 1-8, p. 250, p. 268, 1991; Set 25-26, p. 469, 1984
    74. W. B. Pearson, Metal Physics and Physical Metallurgy, in: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 4, Pergamon Press, London, U. K., pp. 307-310, 1958
    75. T. B. Massalsk and H. W. King, “The Spacing Relationships in H.C.P. ε and η Phases in the Systems CuZn, AgZn;AuZn and AgCd” Acta Metallurgica, Vol. 10, pp. 1171-1181, 1962
    76. H. Jones, “Applications of the Bloch Theory to the Study of Alloys and of the Properties of Bismuth”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 147, No. 861, pp. 396-417, 1934
    77. J. B. Goodenough, “A Theory of Deviation from Close Packing in Hexagonal Metal Crystals”, Physical Review, Vol. 89, No. 1, pp. 282-294, 1953
    78. H. Ohtani, M. Miyashita and K. Ishida, “Thermodynamic Study of Phase Equilibria in the Sn-Ag-Zn System”, Journal of the Japan Institute of Metals, Vol. 63, No. 6, pp. 685-694, 1999
    79. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 1, pp. 85-86, 1987
    80. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113 and Zn65 in Tin”, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974
    81. B. F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, Journal of Applied Physics, Vol. 37, No. 6, pp. 2375-2377, 1966
    82. J. W. Yoon, S. W. Kim, J. M. Koo, D. G. Kim and S. B. Jung, “Reliability Investigation and Interfacial Reaction of Ball-grid-array Packages Using the Lead-free Sn-Cu Solder”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1190-1199, 2004
    83. J. W. Yoon, S. W. Kim and S. B. Jung, “Interfacial Reaction and Mechanical Properties of Eutectic Sn-0.7Cu/Ni BGA Solder Joints during Isothermal Long-term Aging”, Journal of Alloys and Compounds, Vol. 391, pp. 82-89, 2005
    84. R. A. Islam, B. Y. Wu, M. O, Alam, Y. C. Chan and W. Jillek, “Investigations on Microhardness of Sn–Zn Based Lead-free Solder Alloys as Replacement of Sn–Pb Solder”, Journal of Alloys and Compounds, Vol. 392, pp. 149-158, 2005
    85. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 1, pp. 964-965, 1986
    86. G. E. Dieter, Mechanical Metallurgy, McGraw Hill Book Company, London, UK, pp. 203-207, 1988
    87. C. M. Chuang, T. S. Lui and L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder”, Journal of Materials Science, Vol. 37, pp. 191-195, 2002
    88. T. B. Massalski and J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 2, pp. 1176-1179, 1987
    89. T. B. Massalski and J. L. Murray, L. H. Bennett, H. Baker and L. Kacprzak, Binary Alloy Phase Diagrams, Second Edition, ASM International, Metal Park, Ohio, USA, Vol. 1, pp.26-27, 1987
    90. K. Mills, J. R. Davis, J. D. Destefani, D. A. Dieterich, H. J. Frissell, G. M. Crankovic and D. M. Jenkins, Metals Handbook:Fractography, Ninth Edition, Metal Parks, ASM International, Ohio, USA, Vol. 12, pp. 12-22, 1987
    91. K. Lange, Handbook of Metal Forming, McGraw-Hill, New York, USA, pp. 3.20-23, 1985
    92. P. Adeva, G. Caruana, O. A. Ruano and M. Torralba, “Microstructure and High Temperature Mechanical Properties of Tin”, Materials Science and Engineering A, Vol. 194, pp. 17-23, 1995
    93. K. Mills, J. R. Davis, J. D. Destefani, D. A. Dieterich, H. J. Frissell, G. M. Crankovic and D. M. Jenkins, Metals Handbook:Fractography, Ninth Edition, Metal Parks, ASM International, Ohio, USA, Vol. 12, pp. 31-35, 1987
    94. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, p. 188, 1988
    95. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, p. 453, 1988
    96. W. J. Plumbridge and C. R. Gagg, “Effect of Strain Rate and Temperature on the Stress-strain Response of Solder Alloys”, Journal of Materials Science–Materials Electronics, Vol. 10, pp. 461-468, 1999
    97. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile Properties of Sn-Ag Based Lead-free Solders and Strain Rate Sensitivity”, Material Science and Engineering A, Vol. 366, pp. 50-55, 2004
    98. F. Lang, H. Tanaka, O. Munegata, T. Taguchi and T. Narita, “The Effect of Strain Rate and Temperature on the Tensile Properties of Sn–3.5Ag Solder”, Materials Characterization, Vol. 54, pp. 223-229, 2005
    99. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders”, Journal of Electronic Materials, Vol. 26, No. 7, pp.783-790, 1997
    100. L. Zhang, A. P. Xian, Z. G. Wang, E. H. Han and J. K. Shang, “Effect of Strain Rate on the Tensile Properties of Sn-9Zn Eutectic Alloy”, Acta Metallurgica Sinica, Vol. 40, No. 11, pp. 1151-1154, 2004
    101. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile Properties of Sn-3.5Ag and Sn-3.5Ag-0.75Cu Lead-free Solders”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1854-1857, 2002
    102. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, UK, p. 307, p. 450, 1988
    103. V. V. Balasubrahmanyam and Y. V. R. K. Prasad, “Hot Deformation Mechanisms in Metastable Beta Titanium Alloy Ti–10V–2Fe–3Al”, Materials Science and Technology, Vol. 17, pp. 1222-1228, 2001
    104. J. J. Jonas, C. M. Sellars and W. J. M. Tegart, Metallurgical Reviews, Vol. 4, p. 1, 1969
    105. W. J. Plumbridge, “Solders in Electronics”, Journal of Materials Science, Vol. 31, pp. 2501-2514, 1996
    106. J. H. L. Pang, Member, IEEE, and B. S. Xiong, “Mechanical Properties for 95.5Sn-3.8Ag-0.7Cu Lead-free Solder Alloy”, IEEE Transaction on Components and Packaging Technologies, Vol. 28, No. 4, pp. 830-840, 2005
    107. J. Lau, W. Dauksher and P. Vianco, “Acceleration Models, Constitutive Equations, and Reliability of Lead-free Solders and Joints”, in Proc. IEEE ECTC Conference 03, pp. 229-236
    108. A. Schubert and J. H. L. Pang, “Lead-free Solder Mechanical Properties, Testing and Molding”, presented at the 4th Electronics Packing Technology Conference, Lead-free Workshop Notes, 2002
    109. J. Yu, D. K. Joo and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Solder Alloys Containing Cu or Bi”, Acta Materialia, Vol. 50, pp. 4315-4324, 2002
    110. K. L. Murty, F. M. Haggag and R. K. Mahidara, “Tensile, Creep, and ABI Tests on Sn5%Sb Solder for Mechanical Property Evaluation”, Journal of Electronics Materials, Vol. 26, No. 7, pp. 839-846, 1997
    111. A. A. EI- Daly, “Superplasticity in a Relatively Low Melting Point Sn-31.1Pb-3.4Zn Solder Alloy”, Physica Status Solidi (A), Vol. 200, No. 2, pp. 333-338, 2003
    112. A. A. EI- Daly, A. M. Abdel-Daiem and M. Yousf, “Creep Deformation of Pb-Sn-Zn Ternary Alloys”, Materials Chemistry and Physiscs, Vol. 74, pp. 43-51, 2002
    113. N. Bai, X. Chen and Z. Fang, “Effect of Strain Rate and Temperature on the Tensile Properties of Tin-based Lead-free Solder Alloys”, Journal of Electronic Materials, Vol. 37, No. 7, pp. 1012-1019, 2008
    114. C. M. L. Wu and M. L. Huang, “Creep Behavior of Eutectic Sn-Cu Lead-free Solder Alloy”, Journal of Electronic Materials, Vol. 31, No. 5, pp. 442-448, 2002
    115. I. Shohji, C. Gagg and W. J. Plumbridge, “Creep Properties of Sn-8Mass%Zn-3Mass%Bi Lead Free Alloy”, Journal of Electronic Materials, Vol. 33, No. 8, pp. 923-927, 2004
    116. J. E. Breen and J. Weertman, “Creep of Polycrystalline Tin”, Journal of Metals, Vol. 72, pp. 1230-1234, 1955
    117. F. A. Mohamed, K. L. Murty and J. W. Morris, “Harper-dorn Creep in Al, Pb, and Sn”, Metallurgical Transactions, Vol. 4, pp. 935-940, 1973
    118. S. H. Suh, J. B. Cohen and J. Weertman, “X-ray Diffraction Study of Subgrain Misorientation during High Temperature Creep of Tin Single Crystals”, Metallurgical Transactions A, Vol. 14A, pp. 117-126, 1983
    119. M. D. Mathew, H. Yang, S. Movva and K. L. Murty, “Creep Deformation Characteristics of Tin and Tin-based Electronic Solder Alloys”, Metallurgical and Materials Transactions A, Vol. 36A, pp. 99-105, 2005
    120. A. Fawzy, “Effect of Zn Addition, Strain Rate and Deformation Temperature on the Tensile Properties of Sn-3.3wt.% Ag Solder Alloy”, Materials Characterization, Vol. 58, pp. 323-331, 2007
    121. R. Mahmudi, A. R. Geranmayeh, H. Noori and M. Shahabi, “Impression Creep of Hypoeutectic Sn-Zn Lead-free Solder Alloys”, Materials Science and Engineering A, Vol. 491, pp.110-116, 2008
    122. J. E. Bird, A. K. Mukherjee and J. E. Dorn, “Quantitative Relation between Properties and Microstructure”, Israel University Press, Jerusalem, pp. 255-282, 1969
    123. K. L. Murty, Creep and Fracture of Engineering Materials and Structures, J. C. Earthman and F. A. Mohamed, eds., TMS, Warrendale, PA, pp. 739-747, 1997
    124. K. L. Murty and O. Kanert, “Dislocation Jump Distances during Creep of Pure and Doped NaCl Single Crystals Using Nuclear Magnetic Resonance Pulse Techniques”, Journal of Applied Physics, Vol. 67, No. 6, pp. 2866-2872, 1990
    125. P. J. Fensham, “Self-diffusion in Tin Crystals”, Australian Journal of Scientific Research. Series A, Physical Sciences, Vol. 3, pp. 91-104, 1950
    126. J. D. Meakin and E. Klokholm, “Self-diffusion in Tin Single Crystals”, Transactions of the Metallurgical Society of AIME, Vol. 218, pp. 463-466, 1960
    127. S. N. G. Chu and J. C. M. Li, “Impression Creep of β-tin Single Crystals, Materials Science and Engineering, Vol. 39, pp. 1-10, 1979
    128. O. D. Sherby and P. M. Burke, ”Mechanical Behavior of Crystalline Solids at Elevated Temperature”, Progress in Materials Science, Vol. 13, pp. 323-390, 1968
    129. O. D. Sherby and J. Weertman, “Diffusion-controlled Dislocation Creep: a Defense”, Acta Metallurgica, Vol. 27, pp. 387-400, 1979
    130. I. Dutta, C. Park and S. Choi, “Impression Creep Characterization of Rapidly Cooled Sn-3.5Ag Solders”, Materials Science and Engineering A, Vol. 379, pp. 401-410, 2004
    131. M. L. Huang, L. Wang and C. M. L. Wu, “Creep Behavior of Eutectic Sn-Ag Lead-free Solder Alloy”, Journal of Material Research, Vol. 17, No. 11, pp. 2897-2903, 2002
    132. K. L. Murty, “Transitional Creep Mechanisms in Al-5Mg at High Stresses”, Scripta Metallurgica, Vol. 7, pp. 899-903, 1973
    133. K. L. Murty, F. A. Mohamed and J. E. Dorn, “Viscous Glide, Dislocation climb and Newtonian Viscous Deformation Mechanisms of High Temperature Creep in Al-3Mg”, Acta Metallurgica, Vol. 20, pp. 1009-1018, 1972
    134. T. Reinikainen and J. Kivilahti, “Deformation Behavior of Dilute SnBi (0.5 to 6 at. Pct) Solid Solutions” Metallurgical Materials Transactions A, Vol. 30A, No. 1, pp. 123-132, 1999
    135. V. I. Igoshev and J. I. Kleiman, “Creep Phenomena in Lead-free Solders”, Journal of Electronic Materials, Vol. 29, No. 2, pp. 244-250, 2000
    136. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113 and Zn65 in Tin”, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974
    137. E. A. Brandes and G. B. Brook, Smithell’s Metals Reference Book, Butterworth-heinemann, Seventh Edition, 1992

    下載圖示 校內:立即公開
    校外:2009-06-24公開
    QR CODE