簡易檢索 / 詳目顯示

研究生: 陳昱龍
Chen, Yu-Lung
論文名稱: 在 ≦1250℃ 熱處理後之堇青石陶瓷體的相組成及熱膨脹行為
Phase Composition and Thermal Expansion Behavior of Cordierite Ceramics after ≦1250℃ Heat Treatment
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 堇青石相組成熱膨脹係數二次熱處理
外文關鍵詞: cordierite, phase composition, thermal expansion, secondary heat treatment
相關次數: 點閱:76下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用固態反應法將金屬氧化物粉末進行煅燒合成出堇青石粉末,是現今最常運用在汽車觸媒轉換器載體的材料之一。關於引擎加熱所造成的二次熱處理對於堇青石陶瓷體的相變化以及熱膨脹行為之影響,尚未有深入之探討,本實驗的目的為觀察二次熱處理對於堇青石陶瓷體之相組成,以及熱膨脹係數之影響。
    堇青石陶瓷體經過不同溫度的燒結後,再經過 700-1100℃ 之二次熱處理,淬冷並以不同持溫時間以觀察其影響。二次熱處理後之堇青石陶瓷體會利用 X 光繞射圖譜觀察陶瓷體的相鑑定、 Rietveld method擬合相組成以及熱膨脹分析儀量測熱膨脹行為。結果顯示堇青石陶瓷體在 1100℃ 以下不會受到多次熱處理而使得其熱膨脹行為有劇烈的改變,而在 1200℃/12 h 以上之二次熱處理才會使堇青石中的相組成比例關係趨於明顯,因此可推測二次熱處理與汽車觸媒轉換器需進行更換之原因並無明顯之關係。

    Cordierite ceramic can be synthesized from metal oxide powders by solid state method and is one of the common carriers of catalytic converter in engines. The operation of engines produces secondary heat treatment whose effect on cordierite ceramic is not yet understood. The goal of this study is to investigate how the secondary heat treatment affects cordierite ceramic’s phase composition and thermal expansion coefficient.
    Cordierite ceramics were sintered at different temperatures before underwent 700-1250℃ secondary heat treatments with different holding time and quenched to room temperature. The phase composition and thermal expansion coefficient before and after the secondary heat treatment were analyzed by X-ray diffraction, refined by Rietveld method for phase compositions and dilatometer for thermal expansion coefficient, respectively.
    The results suggested that the secondary heat treatments under 1100℃ do not have a major effect on the phase composition and thermal expansion coefficient of cordierite ceramics. Therefore we concluded that the need of replacing the catalytic converter in engine (700-1100℃) has little to do with the change of the cordierite ceramics thermal expansion coefficient.

    摘要 I 致謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XX 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 理論基礎與文獻回顧 3 2-1 堇青石晶體結構及特性 3 2-2 堇青石單晶熱膨脹行為 6 2-3 影響堇青石陶瓷體熱膨脹行為的因素 10 2-4 元素摻雜對堇青石晶體結構及熱膨脹係數之影響 13 2-5 α 與 β 相堇青石比例關係 25 第三章 實驗方法 28 3-1 實驗概念 28 3-2 起始原料 28 3-3 實驗流程 29 3-3-1 堇青石粉末的製備 30 3-3-2 堇青石陶瓷體的燒結製備 31 3-4 材料分析 32 3-4-1 原始粒徑分析 32 3-4-2 粉末之熱差 / 熱重分析 32 3-4-3 X 光粉末繞射分析 32 3-4-4 掃描式電子顯微鏡 34 3-4-5 陶瓷體之密度量測 34 3-4-6 晶體結構分析 35 3-4-7 熱膨脹行為分析 37 第四章 結果與討論 38 4-1 堇青石陶瓷體的合成與性質分析 38 4-1-1 原始粉末粒徑分析 38 4-1-2 各原始粉之熱差 / 熱重分析 38 4-1-3 混合後原始粉之熱差 / 熱重分析 39 4-1-4 結晶相分析 42 4-1-5 燒結條件分析 43 4-1-6 微結構分析 45 4-1-7 燒結陶瓷體相鑑定分析 47 4-2 堇青石陶瓷體中 α 相與 β 相鑑定分析 48 4-2-1 以distortion index 以及 FWHM 判定相比例變化趨勢 48 4-2-2 以 Rietveld method 晶體結構擬合分析相比例 50 4-3 堇青石熱膨脹行為分析 52 4-4 二次熱處理對堇青石陶瓷體的影響 54 4-4-1 二次熱處理過後陶瓷體之相鑑定 54 4-4-2 提高溫度及持溫時間之二次熱處理相鑑定 62 4-4-3 以distortion index 以及 FWHM 判定相比例變化趨勢 68 4-4-4 以 Rietveld method 晶體結構擬合分析相比例 71 4-5 二次熱處理後堇青石熱膨脹行為分析 74 第五章 結論 78 參考文獻 79 附錄 83 7-1 起始粉末之 COA 83 7-2 煅燒粉末 GSAS 軟體分析 85 7-3 GSAS 軟體對於相比例計算之誤差 86 7-4 微裂縫導致的滯緩現象 89

    1. M. Glendening and W. Lee, “Microstructure development on crystallizing hot-pressed pellet of cordierite melt-derived glass containing B2O3 and P2O5,” J. Am. Ceram. Soc., 79 [3] 705-713 (1996).
    2. J. Benito, X. Turrillas, G. Cuello, A. De Aza, S. De Aza and M. Rodríguez, “Cordierite synthesis. A time-resolved neutron diffraction study,” J. Eur. Ceram. Soc., 32 371–379 (2012).
    3. T. Ogiwara, Y. Noda, K. Shoji and O. Kimura, “Solid state synthesis and its characterization oh high density cordierite ceramics using fine oxide powder,” Journal of the Ceramic Society of Japan, 118 [3] 246-249 (2010).
    4. F. Hummel and H. Reid, “Thermal expansion of some glasses in the
    system MgO-Al2O3- SiO2,” J. Am. Ceram. Soc., 34 [10] 319-321 (1951).
    5.劉育佐,低熱膨脹堇青石材料之製備及特性研究,遠東科技大學機械工程系碩士論文,民國九十七年。
    6. A. Putnis, Introduction to mineral sciences, Cambridge university press (1992).
    7. P. Predecki and J. Haas, “Structural aspects of the lattice thermal expansion of hexagonal cordierite,” J. Am. Ceram. soc., 70 175-182 (1987).
    8. I. Lachman, R. Bagley and R. Lewis, “Thermal expansion of extruded cordierite ceramic,” Ceramic Bulletin, 60 [2] 202-205 (1981).
    9. J. Lee and J. Pentecost, “Properties of flux-grown cordierite single crystals,” J. Am. Ceram. Soc., 59 [3-4] 183-184 (1976).
    10. G. Fischer, D. Evans and J. Geiger, “Crystal lattice thermal expansion of cordierite,” Paper B-18, presented at the American Crystallographic Association Meeting at Pennsylvania State University, State College, 18-23 (1974).
    11. M. Milberg and H. Blair, “Thermal expansion of cordierite,” J. Am. Ceram. Soc., 60 [7-8] 372-373 (1977).
    12. D. Evans, G. Fischer, J. Geiger and F. Martin, “Thermal expansion and chemical modifications of cordierite,” J. Am. Ceram. Soc., 63 [11-12] 629-634 (1980).
    13. P. Predecki and J. Haas, “Structural aspects of the lattice thermal expansion of hexagonal cordierite,” J. Am. Ceram. soc., 70 [3] 175-182 (1987).
    14. C.F. Yang, “The effect of Bi2O3 on the dielectric characteristics of CaO-Al2O3-MgO-SiO2 glass ceramics,” J. Mater. Sci., 15 1618-1620 (1996).
    15. S. Lo and C.F. Yang, “The sintering characterisitics of Bi2O3 added CaO-Al2O3-MgO-SiO2 glass powder,” Ceram. Int., 24 139-144 (1998).
    16. J. Gonzalez-Velasco, R. Ferret, R. Lopez-Fonseca and M. Gutierrez-Ortiz, “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder Technol., 153 34-42 (2005).
    17. M. Camerucci, G. Urretavizcaya and A. Cavalieri, “Sintering of cordierite based materials,” Ceram. Int., 29 159-168 (2003).
    18. W. Kingery, The proof test for ceramic processing, in: G.Y. Onoda Jr., L.L. Hench (Eds.), Ceramic Processing Before Firing, Wiley, Florida, 291-306 (1978).
    19. M. Yokota, N. Saio, J. Hirai, A. Sato and N. Kubota, “Crystal growth rate enhancement caused by adhesion of small crystals,” AIChE J. 43 3264- 3270 (1997).
    20. R. Morrell, Hand book of properties of technical & engineering ceramic, part 1: An introduction for the engineer and designer, HMSO, London (1989).
    21. Y. Kobayashi, M. Katayama, M. Kato and S. Kuramochi, “Effect of Microstructure on the Thermal Expansion Coefficient of Sintered Cordierite Prepared from Sol Mixtures,” J. Am. Ceram. Soc., 96 [6] 1863-1868 (2013)
    22. J. Banjuraizah, H. Mohamad and Z. Ahmad, “Thermal expansion coefficient and dielectric properties of non-stoichiometric cordierite compositions with excess MgO mole ratio synthesized from mainly kaolin and talc by the glass crystallization method,” J. Alloys Compd., 494 256-260 (2010).
    23. M. Camerucci, G. Urretavizcaya, M. Castro and A. Cavalieri, “Electrical properties and thermal expansion of cordierite and cordierite-mullite materials,” J. Eur. Ceram. Soc., 21 2917-2923 (2001).
    24. D. Mercurio, P. Thomas, J. P. Mercurio, B. Frit, Y. H. Kim and G. Roult, “Powder neutron diffraction study of the thermal expansion of a K-substituted cordierite,” J. Mater. Science, 24 [11] 3976-3983 (1989).
    25. P. Thomas, D. Mercurio, I. Gouby and B. Frit, “Influence of the size of the alkali ion on the thermal expansion of alkali doped cordierites: a powder neutron diffraction study,” J. Eur. Ceram. Soc., 12 [4] 257-265 (1993).
    26. I. Gouby, P. Thomas, D. Mercurio, T. Merle-Mejean and B. Frit, “Powder x-ray diffraction and infrared study of the structural evolution in highly K-doped cordierites,” Mater. Res. Bull., 30 [5] 593-599 (1995).
    27. P. Predecki, J. Haas, J. Jr. Faber and R. L. Hitterman, “Lattice thermal expansion effects in pure and doped cordierite by time-to-flight neutron diffraction,” Adv. X-ray. Anal., 29 173-184 (1986).
    28. P. Predecki, J. Haas, J. Jr. Faber and R. L. Hitterman, “Thermal expansion behavior of pure and doped cordierite by time-to-flight neutron diffraction,” Adv. X-ray. Anal., 30 395-405 (1987).
    29. Sai Sundar V. S. S. Vepa and A. M. Umarji, “Effect of Substitution of Ca on Thermal Expansion of Cordierite (Mg2AI4Si5O18),” J. Am. Ceram. Soc., 76 [7] 1873-1876 (1993).
    30. H. Ikawa, T. Otagiri, O. Imai, M. Suzuki, K. Urabe and S. Udagawa, “Crystal structures and mechanism of thermal expansion of high cordierite and its solid solutions,” J. Am. Ceram. Soc., 69 [6] 492-498 (1986).
    31. D. Agrawal and V. Stubican, “Germanium-modified cordierite ceramics with low thermal expansion,” J. Am. Ceram. Soc., 69 [12] 847-851 (1986).
    32. Z. M. Shi, X. Bai and X. F. Wang, “Ce4+-modified cordierite ceramics,” Ceram. Int., 32 723-726 (2006).
    33. A. Miyashiro, T. Hyama, M. Yamasaki, and T. Miyashiro, “The polymorphism of cordierite and indialite,” J. Am. Ceram. Soc., 253 [4] 185-208 1955.
    34. A. Miyashiro, “Cordierite–indialite relations,” J. Am. Ceram. Soc., 255 [1] 43-62 (1957).
    35. H. Ohsato, J. S. Kim and A.Y. Kim, C. I. Cheon and K. W. Chae, “Millimeter-wave dielectric properties of cordierite/indialite glass ceramics,” Jpn. J. Appl. Phys., 50 09NF01-05 (2011).
    36. R. Goren , H. Gocmez and C. Ozgur, “Synthesis of cordierite powder from talc, diatomite and alumina,” Ceram. Int., 32 [4] 407-409 (2006).
    37. R. Goren, C. Ozgur and H. Gocmez, “The preparation of cordierite from talc, fly ash,fused silica and alumina mixtures,” Ceram. Int., 32 [1] 53-56 (2006).
    38. A. Putnis, “The mechanism and kinetics of Al, Si ordering in Mg-cordierite,” Am. Mineralogist., 68 60-65 (1983).

    下載圖示 校內:2019-09-10公開
    校外:2019-09-10公開
    QR CODE