簡易檢索 / 詳目顯示

研究生: 張聖偉
Chang, Sheng-Wei
論文名稱: 利用噪訊分析監測潛在崩塌邊坡的地下速度變化
Using ambient noise analysis to monitor temporal changes of underground seismic velocity around the potential landslide slopes
指導教授: 林冠瑋
Lin, Guan-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 環境噪訊尾波速度變化拉伸法移動窗格交互頻譜法
外文關鍵詞: ambient noise, coda wave, velocity change, stretching method, moving window cross spectral
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣由於降雨豐沛且集中,加上地質破碎的自然條件,常在梅雨或颱風期間發生崩塌。崩塌事件可能造成人員傷亡以及財產損失,若能在崩塌前提出預警,便能夠有效降低損失。豪大雨期間地層中含水量的變化常成為崩塌預警的重要指標之一,然而在山坡地上進行地層含水量的觀測並不容易。近年來利用環境噪訊分析來推估地下組成或裂隙等構造的變化,已經被證實可作為一種環境變遷的監測工具。其原理是地下傳波介質的特性改變會影響尾波傳遞的時間,而導致傳波速度的變化。崩塌的成因來自塊體的有效應力降低,而地層中的含水是降低地質材料有效應力的重要因素。在崩塌發生前的地下含水量增加,便會導致傳波速度變慢,而可做為崩塌預警的指標之一。
    本研究於苗栗縣南庄鄉鹿場以及嘉義縣竹崎鄉中心崙分別架設5組地震站,其中地震站分布分別貫穿或包圍潛在崩塌邊坡(地震站間距離為100公尺至600公尺),藉此進行兩站間的環境噪訊分析。本研究所採用之噪訊分析是透過將兩地震站的小時地動訊號進行交互相關分析,再利用拉伸法以及移動窗格交互頻譜法計算速度變化,得出不同頻率段的速度變化率(dv/v)。本研究也收集鄰近邊坡的氣象觀測資料,觀察降雨量及氣溫與地下傳波速度的相關性。在兩種計算速度變化率的方法中,以移動窗格交互頻譜法所計算得到之dv/v的變動幅度較小,而拉伸法所計算得到的dv/v變動幅度可達到±10 %,且數值離散。在濾波波段為4-6 Hz的條件下,兩種dv/v的計算方法之結果都呈現降雨時傳波速度變快之現象。在濾波波段較高的條件時,以拉伸法所計算之dv/v則未與降雨有明顯之關係,而移動窗格交互頻譜法所計算之dv/v的變動仍與降雨有關。dv/v呈現日夜週期的波動則可能與氣溫變化有關。本研究認為在目前的設站條件下,利用移動窗格交互頻譜法計算兩地震站間尾波散射的波速變化率較適用於本研究區域。

    In Taiwan, due to abundant rainfall and fractured geological setting, landslides frequently occur during the rainy seasons or typhoons. A landslide may cause casualties and property losses. If an early warning can be issued before the landslide, the loss can be effectively reduced. Changes in the water content of the formation during heavy rains often become one of the important indicators of landslide warnings. However, it is not easy to observe the water content of the formation on the hillside. In recent years, the use of ambient noise analysis to estimate changes in subsurface structures such as underground composition or fissures has been proven to be a useful monitoring tool for environmental changes. The principle is that changes in the characteristics of the underground wave-transmitting medium will affect the propagation time of the coda wave, resulting in changes in the wave-propagation velocity. The cause of landslide comes from the reduction of the effective stress of the sliding block, and the water content in the formation is an important factor in reducing the effective stress of geological materials. The increase in groundwater content before the landslide will cause the wave propagation velocity to slow down, which can be used as one of the indicators of landslide warning.
    In this study, five seismic stations were equipped in Luchang, Miaoli County, and Zhongsinlun, Chiayi County, respectively. The seismic stations distributed through or surrounded the potential landslide slopes with the distance between seismic stations ranging between 100 m and 600 m, and the ambient noise analysis between the two stations is performed. The noise analysis used in this research is to conduct a cross-correlation analysis of the hourly ground motion signals of the two seismic stations, and then use the stretching method and the moving window cross spectrum (MWCS) method to calculate the velocity change, and obtain the velocity change rate of different frequency bands (dv/v). The study collects meteorological observation data to observe the correlation between rainfall, temperature, and underground wave velocity. The dv/v calculated by the MWCS method has a smaller variation range, while the dv/v calculated by the stretching method can reach ±10%, and the values are discrete. By using the 4-6 Hz filter, the results of the two dv/v calculation methods show the phenomenon that the wave propagation speed becomes faster during rainfall. When using a higher-frequency filter, the dv/v calculated by the stretching method has no obvious relationship with the rainfall, and the variation of the dv/v calculated by the MWCS method is still related to the rainfall. The fluctuation of dv/v in the day-night cycle may be related to temperature changes. This study summaries that under the current station conditions, using the MWCS method to calculate the rate of velocity change of coda wave between two seismic stations is more suitable for the study areas.

    摘要 I Abstract II 誌謝 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3論文架構 3 第二章 文獻回顧 5 2.1尾波散射分析的應用案例 6 2.1.1火山 6 2.1.2地震 8 2.1.3地下水及坡地崩塌 9 2.1.4氣溫變化 11 第三章 研究區域及地震儀安裝位置 13 3.1苗栗縣南庄鄉鹿場崩塌邊坡 14 3.2嘉義縣竹崎鄉中心崙潛在崩塌邊坡 18 第四章 研究方法 23 4.1環境噪訊分析流程 24 4.1.1地動訊號處理 25 4.1.2交互相關分析(Cross Correlation Analysis) 27 4.1.3計算尾波波速變化率 28 4.2水文與氣溫資料 32 4.2.1距離反比權重法(Inverse Distance Weighting, IDW) 34 4.2.2土壤雨量指數(Soil Water Index, SWI) 34 第五章 研究結果 36 5.1各站對於研究期間的交互相關函數參考值(CCFref) 36 5.1.1苗栗鹿場各站對CCFref 36 5.1.2嘉義中心崙各站對CCFref 38 5.2各站對於研究期間之速度變化率 39 5.2.1以拉伸法計算速度變化率之結果 40 5.2.2以移動窗格交互頻譜法計算速度變化率之結果 43 5.3研究期間的水文與氣溫 45 5.3.1苗栗鹿場邊坡的雨量及氣溫紀錄 45 5.3.2嘉義中心崙的雨量及氣溫紀錄 46 第六章 討論 47 6.1拉伸法計算所採用之延遲時間段的影響 47 6.2地震站間距離對計算速度變化率的影響 49 6.3比較拉伸法(SM)與移動窗格交互頻譜法(MWCS) 52 6.4速度變化與降雨及地下含水狀況的關係 53 6.5速度變化與氣溫的關係 56 第七章 結論 59 參考文獻 61

    Bièvre, G., Franz, M., Larose, E., Carrière, S., Jongmans, D., & Jaboyedoff, M. (2018). Influence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland). Engineering Geology, 245, 248-257.
    Cho, S. E., & Lee, S. R. (2001). Instability of unsaturated soil slopes due to infiltration. Computers and geotechnics, 28(3), 185-208.
    Clarke, D., Zaccarelli, L., Shapiro, N. M., & Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 186(2), 867-882.
    Clements, T., & Denolle, M. A. (2018). Tracking groundwater levels using the ambient seismic field. Geophysical Research Letters, 45(13), 6459-6465.
    De Plaen, R. S., Lecocq, T., Caudron, C., Ferrazzini, V., & Francis, O. (2016). Single‐station monitoring of volcanoes using seismic ambient noise. Geophysical Research Letters, 43(16), 8511-8518.
    Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., & White, R. S. (2017). Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Science advances, 3(6), e1700219.
    Fores, B., Champollion, C., Mainsant, G., Albaric, J., & Fort, A. (2018). Monitoring saturation changes with ambient seismic noise and gravimetry in a karst environment. Vadose Zone Journal, 17(1), 1-12.
    Gasmo, J. M., Rahardjo, H., & Leong, E. C. (2000). Infiltration effects on stability of a residual soil slope. Computers and geotechnics, 26(2), 145-165.
    Grêt, A., Snieder, R., Aster, R. C., & Kyle, P. R. (2005). Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophysical Research Letters, 32(6).
    Hadziioannou, C., Larose, E., Baig, A., Roux, P., & Campillo, M. (2011). Improving temporal resolution in ambient noise monitoring of seismic wave speed. Journal of Geophysical Research: Solid Earth, 116(B7).
    Hirose, T., Nakahara, H., & Nishimura, T. (2017). Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: Application to Sakurajima volcano, Japan. Earth, Planets and Space, 69(1), 42.
    Heckels, R. E., Savage, M. K., & Townend, J. (2018). Post-seismic velocity changes following the 2010 M w 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis. Geophysical Journal International, 213(2), 931-939.
    James, S. R., Knox, H. A., Abbott, R. E., & Screaton, E. J. (2017). Improved moving window cross‐spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophysical Research Letters, 44(9), 4018-4026.
    Kappelmeyer, O. (1957). The use of near surface temperature measurements for discovering anomalies due to causes at depths. Geophysical Prospecting, 5(3), 239-258.
    Kortink, M. (2020). Effect of the Kaikōura Earthquake on Velocity Changes In and Around the Ruptured Region: A Noise Cross-Correlation Approach.
    Lin, G. W., Chen, H., Chen, Y. H., & Horng, M. J. (2008). Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Engineering Geology, 97(1-2), 32-41.
    Lecocq, T., Longuevergne, L., Pedersen, H. A., Brenguier, F., & Stammler, K. (2017). Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. Scientific reports, 7(1), 1-16.
    Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., & Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. Journal of Geophysical Research: Earth Surface, 117(F1).
    Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., & Prieto, G. A. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Science advances, 2(5), e1501538.
    Niederleithinger, E., & Wunderlich, C. (2013, January). Influence of small temperature variations on the ultrasonic velocity in concrete. In AIP Conference Proceedings (Vol. 1511, No. 1, pp. 390-397). American Institute of Physics.
    Nimiya, H., Ikeda, T., & Tsuji, T. (2017). Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. Science advances, 3(11), e1700813.
    Okada, K. (2002). Soil Water Index. Weather service bulletin, 69.5, 67-97. (in Japanese)
    Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research: Solid Earth, 89(B7), 5719-5731.
    Picarelli, L., Urciuoli, G., Ramondini, M., & Comegna, L. (2005). Main features of mudslides in tectonised highly fissured clay shales. Landslides, 2(1), 15-30.
    Preiswerk, L. E., & Walter, F. (2018). High‐Frequency (> 2 Hz) Ambient Seismic Noise on High‐Melt Glaciers: Green's Function Estimation and Source Characterization. Journal of Geophysical Research: Earth Surface, 123(8), 1667-1681.
    Ratdomopurbo, A., & Poupinet, G. (1995). Monitoring a temporal change of seismic velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (Indonesia). Geophysical research letters, 22(7), 775-778.
    Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. John Wiley & Sons.
    Sens‐Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical research letters, 33(21).
    Snieder, R. (2006). The theory of coda wave interferometry. Pure and Applied geophysics, 163(2-3), 455-473.
    Taruselli, M. (2017). Cross-correlation of ambient seismic noise to monitor groundwater level variations. Application to Crepieux-Charmy water capturing field (France).
    Voisin, C., Guzmán, M. A. R., Réfloch, A., Taruselli, M., & Garambois, S. (2017). Groundwater monitoring with passive seismic interferometry.
    何春蓀(1986),台灣地質圖概論-台灣地質圖說明書,經濟部中央地質調查所,新北市,共164頁。
    何學承、陳毅輝(2019),108年度中心崙崩塌地潛在大規模崩塌調查監測計畫,震翔監測工程有限公司,台中市,33-65頁。
    吳明進、陳幼麟(1993),臺灣的氣候分區,大氣科學月刊,21-1,55-66。
    林慶偉、陳柔妃、陳宏宇、許雅儒、郭志禹、陳建志、林美聆、王國隆(2017),106年大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(III)-大規模崩塌多元多尺度綜合監測、資料綜整分析與滑動機制研究:以太平山蘭台地區為例(III),國立成功大學地球科學系,台南市。
    洪淑蕙(2015),用周遭噪訊和尾波干涉法監測地震和火山活動引起地殼構造擾動的時空分佈,台灣地震科學中心通訊,9,4-5。
    耿文溥(1986),臺灣中部竹山及嘉義間之地質,經濟部中央地質調查所彙刊,4,1-26。
    陳樹群、蔡喬文、陳振宇、陳美珍(2013),筒狀模式之土壤雨量指數應用於土石流防災警戒,中華水土保持學報,44(2),131-143。
    經濟部中央地質調查所(2008),都會區及周緣坡地環境地質資料庫圖集及說明書,北部地區II,經濟部中央地質調查所,新北市。

    無法下載圖示 校內:2025-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE