簡易檢索 / 詳目顯示

研究生: 楊健明
Yang, Jian-Ming
論文名稱: 藉由嵌入二維阿基米德晶格之氮化鎵光子晶體共振腔提升發光二極體之發光效率
Enhancing the Extraction Efficiency from the Light-Emitting Diode by Inserting 2D GaN Photonic Cavity with the Archimedean Tilings
指導教授: 王清正
Wang, Cing-Jheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 光子晶體共振腔發光二極體阿基米德晶格
外文關鍵詞: photonic crystal, cavity, light emitting diode, Archimedean lattice
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體(photonic crystal)是由不同折射率材料排列而成的人造結構,具多種維度形式的周期性排列,經由適度的設計,可以有效控制電磁波的傳遞效果。一般而言,光子晶體具有多方面的應用,如波導、共振腔、反射器、光纖、發光二極體、太陽能電池等。發光二極體(light emitting diode)是透過摻雜的方式使半導體材料成為 p型與n型,再把它們接合在一起形成p-n接面。電子及電洞可以容易地從n型及p型的材料注入,而當電子與電洞相遇而結合,就會以光子的形式釋放出能量。

    光子晶體用來讓發光二極體提升發光效率主要有兩種機制,一種是讓發光波長落在可輻射出光子晶體的輻射模態,當光打入光子晶體時,光線能從結構中萃取出來;另一種是讓發光波長落在二維光子晶體能隙內,當光進入光子晶體時,由於無法在二維光子晶體的平面方向傳導,使得光線往垂直方向透射出。

    本文利用阿基米德晶格(Archimedean lattice)與傳統三角晶格做比較,藉由蝕刻氮化鎵空氣柱,變換共振腔中心的缺陷(H1、H2),使用平面波展開法(PWEM)運算能隙,讓電磁波波段集中在共振腔中心,最後再置入發光二極體,利用時域有限差分法(FDTD)模擬 LED,提升發光效率。

    Photonic crystals(PhCs) are artificial multi-dimension periodic structures with periodic modulation of the refractive index. Suitably designed, PhCs have the ability to control the propagation of light. Generally, PhCs have a wide range of applications, such as waveguides, resonant cavities, reflectors, optical fiber,light-emitting diodes (LED), solar cells.
    Light-emitting diode is a p-type and n-type semiconductor material doped, by way of joining them together and then forming the p-n junction. Electrons and holes can be easily obtained from the n-type and p-type material is injected, and when the electrons and holes recombine within the device, releasing energy in the form of photons.

    To enhancing the light extraction efficiency, the PhCs have both guide and radiation modes. The guide mode allows the lights to transmit internally. One is to allow the emission wavelength of the radiation fall out radiation mode photonic crystal, when light is into the photonic crystal, it is extracted from the structure.Another is to allow the emission wavelength falls within the two-dimensional photonic crystals bandgap crystals. When light is emitting, it unable conduct in the
    plane of the two-dimensional photonic crystal, then making the light escape of vertical transmission.

    In this paper, we use Archimedes lattice compared with the traditional triangular lattice, with air holes etched GaN, designated the defects , namely H1 and H2 are in the center of the cavities. By using the plane wave expansion method (PWEM) we design the structural parameter, so that electromagnetic waves concentrated in the center of the cavity. And then using the finite-difference time-domain (FDTD) method to simulate the LEE from the PhC-LED.

    摘要....................................I Abstract....................................II Extend abstract....................................IV 致謝....................................VII 目錄....................................VIII 表目錄....................................X 圖目錄....................................XI 符號說明....................................XVI 第一章 緒論....................................1 1-1 前言 ....................................1 1-2 研究背景....................................2 1-2-1 光子晶體簡介....................................2 1-1-2 阿基米德晶格簡介....................................5 1-2-3 發光二極體簡介....................................6 1-3 文獻回顧....................................7 第二章 數值方法....................................14 2-1 前言 ....................................14 2-2 平面波展開法....................................15 2-2-1 倒晶格(Reciprocal lattice)....................................15 2-2-2 布拉克理論(Bloch Theorem)....................................16 2-2-3 平面波展開法....................................16 2-2-4 正方晶格(Square lattice)....................................20 2-2-5 三角晶格(Triangular lattice)....................................21 2-3時域有限差分法....................................22 2-3-1 時域有限差分法推導....................................22 2-3-2 完美匹配吸收層....................................25 第三章 光子晶體LED結構設計與模擬方法 ....................................34 3-1 發光二極體理論....................................34 3-2 LED向上發光比例計算....................................34 3-3 模擬計算光子晶體LED步驟....................................35 3-4 阿基米德晶格....................................38 3-5 光子晶體參數選擇....................................39 第四章 阿基米德光子晶體共振腔應用在LED結構提升發光效率....................................50 4-1 光子晶體能帶結構....................................50 4-2 光子晶體共振腔品質因子計算....................................51 4-2-1 置入H1型光子晶體共振腔運算結果....................................51 4-2-2 置入H2型光子晶體共振腔運算結果....................................51 4-3 比較光子晶體共振腔LED向上發光比例....................................53 第五章 結論與未來展望....................................71 5-1 結論 ....................................71 5-2 未來展望....................................71 參考文獻....................................72

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, Vol.58, No. 20, pp.2059-2062 (1987).
    [2] S. John, “Strong localization of photons in certain disorded dielectric superlattices,” Physical Review Letters, Vol.58, No.20, pp.2486-2489 (1987).
    [3] J. D. Jannopolous, R. D. Meade and J. N. Winn, “Photonic Crystal,” Princeton U. Press, Princeton, N.J. (1995).
    [4] Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
    [5] D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev B, Vol. 53, No.11, pp.7134-7142 (1996).
    [6] M. Loncar, T. Doll, J. Vuckovic, A. Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” Lightwave Tech. 18 pp. 1402-1411 (2000).
    [7] J. C. Knight, J. Broeng*, T. A. Birks, P. St. J. Russell, “ Photonic Band Gap Guidance in Optical Fibers,” SCIENCE, Vol 282 pp.1478 (1998).
    [8] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light Extraction from Optically Pumped Light-Emitting Diode by Thin-Slab Photonic Crystals,” Appl. Phys. Lett. 75, pp. 1036-1038 (1999).
    [9] V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates forthe infrared spectral range,” Opt. Lett. 29, pp.2061-2063 (2004).
    [10] Branko Grünbaum and G.C. Shephard, “Tilings and Patterns,” New York: W. H. Freeman (1987).
    [11] S. David, A. Chelnokov, and J.-M. Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean- like tilings,” Optics Letters, Vol. 25, Issue 14, pp. 1001-1003 (2000).
    [12] Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim“ Two-Dimensional Photonic Band-Gap Defect Mode Laser ” SCIENCE, Vol. 284, p.1819 (1999).
    [13] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,”Appl. Phys. Lett. 75,pp. 1036-1038 (1999).
    [14] R. Colombelli, K Srinivasan, M. Troccoli,O. Painter, C. F. Gmachl, D. M. Tennant, A. Michael Sergent, D. L. Sivco, A. Y. Cho,F. Capasso, “Quantum Cascade Surface-Emitting Photonic Crystal Laser,” SCIENCE, Vol. 302 p.1374 (2003).
    [15] X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang and H. Cao“Ultraviolet photonic crystal laser,” Appl. Phys. Lett. Vol. 85, p.3657 (2004).
    [16] Susumu Noda, Yoshihiro Akahane, Takashi Asano,et.al, “High-Q photonic nanocavity in a two-dimensional photonic crystal,”NATURE Vol.425, 944-947(2003).
    [17] K. Nozaki and T. Baba,“Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84, 4875 (2004)
    [18] R. C. Gauthier, K. Mnaymneh, S. Newman, K.E. Medri, C. Raum, “Hexagonal array photonic crystal with photonic quasi-crystal defect inclusion,” Opt. Mat. Vol. 31, 51(2008).
    [19] Ralph Wirth, Christian Karnutsch, Siegmar Kugler, and Klaus Streubel, “High-efficiency resonant-cavity LEDs emitting at 650 nm,” IEEE Photonics Technology Letters, Vol. 13, No. 5 (2001).
    [20] H. Y. Ryu and Y. H. Lee et. al. “Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature,” Appl. Phys. Lett. ,Vol. 79, pp. 3573-3575 (2001).
    [21] Alexei A. Erchak et. al. “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. Vol. 78, pp. 563-565 (2001).
    [22] K. Bergenek, Ch. Wiesmann, H. Zull, R. Wirth, P. Sundgren, N. Linder, K. Streubel and T. F. Krauss, “Directional light extraction from thin-film resonant cavity light-emitting diodes with a photonic crystal,” Appl. Phys. Lett. Vol 93, 231109 (2008).
    [23] Sakoda, Kazuaki, “Optical Properties of Photonic Crystals,” Springer Series in Optical Sciences, Vol. 80 (2001).
    [24] Kane S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas and Propagation, AP-14, 802-807 (1966).
    [25] J. B. Berenger, “A Perfectly Matched Layer for Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185-200 (1994).
    [26] Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460-1463 (1995).
    [27] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propagation. 44, 1630-1639 (1996).
    [28] Allen Taflove and Susan C. Hagness, “Computational Electrodynamics: The Finite-Difference Time- Domain Method,” Norwood, MA: Artech House (1995).
    [29] Taflove and S. C. Hagness, “Computational electrodynamics: The finite-difference time-domain method,”Artech House, Boston (2000).
    [30] S. T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” Journal of Lightwave Technology, Vol.7, pp.2033-2038(1989).
    [31] H.Y. Ryu, “Modification of the Light Extraction Efficiency in Micro-cavity Vertical InGaN Light-emitting Diode Structures,” J. Korean Phys. Soc. 55, 1267 (2009).
    [32] H. Y. Ryu, J. K. Hwang, and Y.H. Lee, “The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect Cavity,” IEEE J. Quantum Electron. 39, 314(2003).
    [33] C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O’Brien, and P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am B 19, 1777 (2002).
    [34] J. Huh, J.K. Hwang, H. Y. Ryu, and Y. H. Lee, “Nondegenerate monopole mode of single defect two-dimensional triangular photonic band-gap cavity,”J. Appl. Phys. 92, 654 (2002).

    下載圖示 校內:2024-04-26公開
    校外:2024-04-26公開
    QR CODE