簡易檢索 / 詳目顯示

研究生: 李囿運
Lee, You-Yun
論文名稱: 以模型為基礎之轉斜眼球運動量化分析
Model-Based Quantitative Analysis of Vergence Eye Movements
指導教授: 陳天送
Chen, Tainsong
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 121
中文關鍵詞: 模型轉斜眼球運動
外文關鍵詞: model, Vergence
相關次數: 點閱:75下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 轉斜眼球運動是利用內直肌與外直肌使眼球同時向內(convergence)或向外(divergence)轉動,使我們能夠感知到不同距離的物體。
    Convergence insufficiency (CI)的病患往往有頭痛、模糊視覺、複視以及眼睛疲勞等症狀。此類的患者同時也會表現出有高度的外隱斜視(exophoria)、眼球內聚的能力減弱、眼球可以凝視的範圍減少等現象。 他們轉斜眼球運動與正常人相比之下呈現出較慢的動態。在臨床上,視覺治療(Vision therapy)被用來減輕病患的症狀,它能夠減少隱斜視(phoria)的程度、增加眼球可以凝視的範圍以及恢復眼球內聚的能力。視覺治療確實幫助病人減輕了症狀,但是並沒有太多的科學去研究跟其相關的機制。同時,關於轉斜眼動的神經控制機制至今仍存在著爭議。本研究的目的是研究與轉斜眼動相關的神經控制機制以及比較一些已經建立好的轉斜眼動模型。本研究所提出的方法將可以針對CI病人的進行研究。
    本研究中總共包含三個主題,第一個主題對於divergence進行了量化分析同時也研究了divergence 跟convergence對於平滑移動的目標、純步階目標還有短暫停留的步階目標所產生的反應。第二個主題研究了在眼球適應於不同的凝視位置所產生的眼動動態改變。在第三個研究中我們重建並比較了兩個不同的轉斜眼動(vergence)模型。
    在divergence的量化結果中,我們發現了眼球在追描一個平滑移動的目標時,眼球表現出了平滑追瞄同時伴隨一些類步階(step-like)的動態反應,而這些類步階的動態反應與純步階(step)的動態反應有相似的主程序(main sequence)關係。另一方面,這個類步階反應的動態跟它所開始的起始位置有相關。最後我們也發現了在進行divergence時,對於純步階目標還有短暫停留的步階目標所產生的動態反應也表現出相似的主程序關係。在對於phoria adaptation的研究中,我們使眼球適應於不同的凝視位置而產生phoria adaptation,並發現此反應造成divergence暫態成分動態上的改變。而divergence動態上的改變與視覺目標的初始位置相關。在第三個研究的結果中顯示,我們所重建的兩個模型都能夠經由適當的參數調整而得到合理的動態反應,而其中使用到preprogrammed成份的模型在模擬不同振幅的反應時需要較少的修正。兩個模型都沒有辦法模擬雙重步階(double step)跟開迴路(open loop)的動態反應。
    在本研究當中所使用的分析方法可以應用於有視覺異常的病人。藉由分析在視覺治療前後的動態改變,可以幫助我們更加了解視覺治療對於視覺系統所產生的影響。因為我們更加的了解關於視覺系統的控制機制,希望本研究的成果能夠更進一步的幫助病人的診斷與治療。

    Vergence eye movements enable depth perception utilizing the medial and lateral recti muscles to rotate the eyes inward (convergence) or outward (divergence). Patients with convergence insufficiency (CI) report symptoms such as headache, blur, diplopia and eye strain. They show high exophoria, receded near point of convergence and reduce fusional range. Their symmetrical disparity vergence movements have reduced dynamics compared to healthy controls. Vision therapy is used to remediate patient’s symptoms resulting in a reduced phoria level, increased fusional ranges and reduced near point of convergence. Vision therapy helps patients yet there is little science investigating the mechanism behind the improvement. Furthermore, controversy exists in the literature about the basic neural control of vergence eye movements. The purpose of this research is to study the basic science of vergence eye movements and compare the established models. Three studies are involved in this thesis. The first study sought to quantify divergence eye movements and differences between divergence and convergence to smoothly-moving ramp, step and disappearing step stimuli. The second study sought to study how sustained convergence over a range of positions influenced disparity divergence eye movements generated from two different initial positions, one near and one far. The third study constructed and compared two established models of vergence, a switched-channel feedback model and a dual-mode configurative model consisting of a preprogrammed element in parallel with a continuous feedback loop.
    Our quantification of divergence eye movement shows that 1) a smooth tracking behavior was observed for slow ramps while the fast ramps elicited smooth tracking combined with a high-velocity, step-like behavior, 2) the high-velocity components observed in the faster ramps had a similar main sequence as divergence steps, 3) divergence dynamics to disappearing steps starting at the subject’s near dissociated phoria level were similar to corresponding step responses and 4) the high-velocity components from divergence ramps were dependent on initial vergence position, whereas the high-velocity components from convergence ramps were not. The phora adaptation study shows that 1) phoria adaptation induced by sustained convergence over a range of different positions causes nonlinear changes in divergence transient dynamics and 2) the modification of divergence was dependent on the stimulus initial position. Our comparison on two vergence models indicates that after parameter adjustments, both models could accurately simulate step responses of subjects with a range of response dynamics. The model with a preprogrammed element required less modification when stimulus amplitude changed. Neither model could simulate the naturally occurring double responses nor the open-loop data reported in the literature.
    The analysis techniques in this thesis provide new methods to study the dynamics of eye movements in patients with vision dysfunction. By analyzing the dynamics of eye movements before and after vision therapy, the effect of vision therapy can be better understood and may result in more efficient and personalized treatments for improving the vision function in patients.

    ABSTRACT I 中文摘要 III 誌謝 V LIST OF TABLES IX LIST OF FIGURES X CHAPTER 1 Introduction-------------------- 1 1.1 Background ---------------------------------------------------------------------------- --1 1.1.1 The anatomy of human eye--------------------------------------------------- ---1 1.1.2 Sensory processing of the visual circuit---------------------------------- -----4 1.1.3 Cognitive control and execution of the visual circuit------------------ ---5 1.1.4 The structure and function of extrocular muscle---------------------- -------7 1.2 Concepts of eye movements---------------------------------------------------------- -8 1.2.1 The classification and of eye movements---------------------------- ---------8 1.2.2 Neural control in eye movements-------------------------------------- -----10 1.2.3 Cerebral control in eye movements--------------------------------------- --12 1.2.4 Cerebellum control in eye movements---------------------------------- ---16 1.3 Goals and motivation---------------------------------------------------------------- --17 1.3.1 Effect of vision therapy in patients with convergence insufficiency --- -17 1.3.2 Effect of phoria adaptation in vergence eye movement---------------- ---18 1.3.3 Model assessment of the oculomotor system---------------------------- ---19 1.4 Organization of this dissertation----------------------------------------- ----------22 CHAPTER 2 Vergence Eye Movement------------------------------------------------ ------23 2.1 The behavior of vergence eye movement---------------------------------------- --23 2.2 Difference between convergence and divergence------------ ---------28 2.3 Models of disparity vergence eye movements------------------- ------------------29 2.4 Adaptation in eye movement---------------------------------------------------------34 2.4.1 Adaptation in oculomotor system---------------------------------------------34 2.4.2 Dissociated phoria and phoria adaptation------------------------------------38 CHAPTER 3 Methodology--------------------------------------------------------------------41 3.1 Techniques for eye movements recording in clinical research------------------ 41 3.2 Materials and apparatus-------------------------------------------------------------- 43 3.3 Experimental design for quantitative analysis of divergence response -------- 45 3.3.1 Subjects---------------------------------------------------------------------------45 3.3.2 Experimental protocol-------------------------------------------------------- --45 3.3.3 Data and statistical analysis---------------------------------------------------- 49 3.4 Experimental design for phoria adaptation influences on divergence dynamics--------------------------------------------------------------------------------52 3.4.1 Subjects-------------------------------------------------------------------------- -52 3.4.2 Experimental protocol-------------------------------------------------------- --52 3.4.3 Data and statistical analysis------------------------------------------------ ---54 3.5 Model verification of vergence eye movements-----------------------------------57 3.5.1 Subjects-------------------------------------------------------------------------- -57 3.5.2 Experimental protocol--------------------------------------------------------- -57 3.5.3 Data analysis------------------------------------------------------------- -------58 3.5.4 Model construction------------------------------------------------------------ -58 CHAPTER 4 Results---------------------------------------------------------------------------61 4.1 Quantification analysis of divergence response------------------------------------61 4.1.1 Divergence responses for ramp stimuli---------------------------------------61 4.1.2 Divergence step and disappearing step responses-------------------------- 64 4.1.3 Quantification of convergence and divergence responses for ramp stimuli--------------------------------------------------------------------------- -66 4.2 Phoria adaptation influences on divergence dynamics----------------------------69 4.2.1 Phoria adaptation influence divergence dynamic--------------------------- 69 4.2.2 Phoria adaptation influence phoria level------------------------------------- 72 4.2.3 Relationship between phoria level and divergence dynamic-------------- 75 4.3 Model assessment of vergence eye movement-------------------------- ----------79 4.3.1 Model responses fit experimental step responses--------------- -----------79 4.3.2 Model responses fit the open loop experimental responses---------------88 4.3.3 Comparison of preprogrammed component generated from both models---------------------------------------------------------------------------- 89 CHAPTER 5 Discussion----------------------------------------------------------------- -----93 5.1 Quantification analysis of divergence response ---------------------------------- 93 5.1.1 Behavioral evidence to support a preprogrammed component in divergence--------- --------------------------------------------------------------93 5.1.2 Divergence is a distinct system and not merely negative convergence--------------------------------------------------------------------- 95 5.2 Phoria adaptation influences on divergence dynamics -------------------------- 96 5.2.1 Influence of phoria adaptation and initial position on divergence dynamics------------------------------------------------------------------------- 96 5.2.2 Baseline phoria measurements----------------------------------------------- 98 5.3 Model assessment of vergence eye movement ---------------------------------- 99 CHAPTER 6 Conclusion and Future Works----------------------------------------------- 102 6.1 Quantification analysis of divergence response---------------------------------- 102 6.2 Phoria influence divergence dynamic--------------------------------------------- 103 6.3 Model assessment of vergence eye movement---------------------------------- 103 REFERENCES ------------------------------------------------------------------------------- 105 自 述 ------------------------------------------------------------------------------------------ 120 著作權聲明 ---------------------------------------------------------------------------------- 121

    Anatomy of the Human Eye, (2001). Retrieved October 2007, from http://teachhealthk-12.uthscsa.edu/curriculum/vision-hearing/pa06pdf/0601LSN.pdf

    Aziz, S., Cleary, M., Stewart, H. K., & Weir, C. R. (2006). Are orthoptic exercises an effective treatment for convergence and fusion deficiencies? Strabismu, 14, 183-189.

    Arai, K., Keller, E. L., & Edelman, J. A. (1994). Two-dimensional neural network model of the primate saccadic system. Neural Networks, 7, 1115-1135.

    Alvarez, T. L., Semmlow, J. L, Yuan W., & Munoz, P. (2002). Comparison of Disparity Vergence System Responses to Predictable and Non-predictable Stimulations. Current Psychology of Cognition, 21, 243-261.

    Alvarez, T. L., Semmlow, J. L., & Yuan, W. (1998). Closely-Spaced, Fast Dynamic Movements in Disparity Vergence. Journal of Neurophysiology, 79, 37-44.

    Alvarez, T. L., Semmlow, J. L., & Pedrono, C. (2005). Divergence eye movements are dependent on initial stimulus position. Vision Research, 45, 1847–1855.

    Alvarez, T. L., Semmlow, J. L., & Pedrono, C. (2007). Dynamic Assessment of Disparity Vergence Ramps. Computers in Medicine and Biology, 37, 903-909.

    Albano, J. E., & King, W. M. (1989). Rapid adaptation of saccadic amplitude in humans and monkeys. Investigative Ophthalmology & Visual Science, 30, 1883–1893.

    Albano, J. E., & Marrero, J. A. (1995). Binocular interactions in rapid saccadic adaptation. Vision Research, 35, 3439–3450.

    Brautaset, R. L., & Jennings, J. A. M. (2005). Distance vergence adaptation is abnormal in subjects with convergence insufficiency. Ophthalmic & physiological optics, 25, 211-214.

    Brautaset, R. L., & Jennings, J. A. M. (2005). Increasing the proportion of binocular vision makes horizontal prism adaptation complete. Ophthalmic and Physiological Optics, 25, 168–170.

    Bodis-Wollner, I., Bucher, S. F., Seelos, K. C., Paulus, W., Reiser, M., & Oertel, W. H. (1997). Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades. Neurology, 49,416-420.

    Birnbaum, M. H. (1985). An esophoric shift associated with sustained fixation. American journal of optometry and physiological optics, 62, 732-735.

    Buttner, U., Fuchs, A. F., Markert-Schwab, G., & Buckmaster, P. (1991). Fastigial nucleus activity in the alert monkey during slow eye and head movements. Journal of Neurophysiology, 65,1360– 1371.

    Bucci, M. P., Brmond-Gignac, D., & Kapoula, Z. (2008). Latency of saccades and vergence eye movements in dyslexic children. Experimental Brain Research, 2008 Mar 21.

    Bahill, A. T., & Stark, L. (1979). The Trajectories of Saccadic Eye Movements. Scientific American, 240, 108-117.

    Bahill, A. T., Clark, M. R., & Stark, L. (1975). The main sequence: a tool for studying eye movements. Mathematica Biosciences, 24, 191-204.

    Bahill, A. T., Kallman, J. S., & Lieberman, J. E. (1982). Frequency limitations of the two-point central difference differentiation algorithm. Biological Cybernetics, 45, 1-4.

    Busettini, C. & Mays, L. E. (2003). Pontine omnipause activity during conjugate and disconjugate eye movements in macaques, Journal of Neurophysiology, 90, 3838–3853.

    Brautaset, R. L., & Jennings, J. A. (2005) Increasing the proportion of binocular vision makes horizontal prism adaptation complete. Ophthalmic and Physiological Optics, 25, 168–170.

    Cheng, D., Schmid, K. L., & Woo, G. C. (2008). The effect of positive-lens addition and base-in prism on accommodation accuracy and near horizontal phoria in Chinese myopic children. Ophthalmic and Physiological Optics, 28, 225-237.

    Ciuffreda, K. J., Kapoor, N., Rutner, D., Suchoff, I. B., Han, M. E., & Craig, S.(2007) Occurrence of oculomotor dysfunctions in acquired brain injury: a retrospective analysis. Optometry, 78,155-61.

    Ciuffreda, K. J. (2002). The scientific basis for and efficacy of optometric vision therapy in nonstrabismic accommodative and vergence disorders. Optometry, 73, 735-762.

    Cooper, J., & Duckman, R. (1978). Convergence insufficiency: incidence, diagnosis, and. treatment. Journal of the American Optometric Association. 49, 673-680.

    Cohen, A. H., & Soden, R. (1984). Effectiveness of visual therapy for convergence insufficiencies for an adult population. Journal of the American Medical Association, 55, 491-494.

    Cooper, J. (1992). Clinical implications of vergence adaptation. Optometry and vision science, 69, 300-307.

    Ciuffreda, K. J., & Tannen, B. (1995). Eye Movement Basic for the Clinician. Mosby.

    Collewijn, H., Erkelens, C. J., & Steinman, R. M. (1995). Voluntary binocular gaze-shifts in the plane of regard: Dynamics of version and vergence. Vision Research, 35, 3335–3358.

    Coubard, O., Daunys, G., & Kapoula, Z., (2004). Gap effects on saccade and vergence latency. Experimental Brain Research, 154, 368-381.

    Carter, D. B. (1963). Effects of prolonged wearing of prism. American journal of optometry and archives of American Academy of Optometry, 40, 265–273.

    Daum, K. (1984). Convergence insufficiency. American journal of optometry and archives of American Academy of Optometry. 61, 16– 22.

    Dowley, D. (1990). Heterophoria. Optometry and vision science, 67, 456-460

    Doricchi, F., Perani, D., Incoccia, C., Grassi, F., Cappa, S. F., Bettinardi, V., Galati, G., Pizzamiglio, L., & Fazio, F. (1997). Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography. Experimental Brain Research, 116, 50-62.

    Deseilligny-Pierrot, C., Milea, Dan, Mri, M., & Ren. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17, 17-25

    Deubel, H. (1995). Separate adaptive mechanisms for the control of reactive and volitional saccadic eye movements. Vision Research, 35, 3529–3540.

    Everling S, Krappmann P, & Flohr H. (1997). Cortical potentials preceding pro- and antisaccades in man. Electroencephalography and Clinical Neurophysiology, 102, 356-362.

    Everling, S., Spantekow, S., Krappmann, P., & Flohr, H. (1998). Event-related potentials associated with correct and incorrect responses in a cued antisaccade task. Experimental Brain Research, 118, 27-34.

    Erkelens C. J., Collewijn, H., & Steinman R. M. (1989). Asymmetrical adaptation of human saccades to anisometropic spectacles. Investigative Ophthalmology & Visual Science, 30, 1132-1145.

    Ehrlich, D. L. (1987). Near vision stress: vergence adaptation and accommodative fatigue. Ophthalmic and Physiological Optics, 7, 353-357.

    Freed, S., & Hellerstein, L. F.(1997). Visual electrodiagnostic findings in mild traumatic brain injury. Brain Inj, 11, 25-36.

    Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkey performing a delayed antisaccade task. Nature, 365, 753-756.

    Fuchs, A. F., Robinson, F. R., & Straube, A. (1994). Participation of the caudal fastigial nucleus in pursuit eye movements. I. Neuronal activity. Journal of Neurophysiology, 72,2714–2728.

    Fukushima, K., Tanaka, M., & Yoshida, T. (1996). Adaptive changes in human smooth pursuit eye movement. Neuroscience Research, 25, 391–398.
    Fuchs, A. F., Reiner, D., & Pong, M. (1996). Transfer of gain changes from targeting to other types of saccade in the monkey: constraints on possible sites of saccadic gain adaptation. Journal of Neurophysiology, 76, 2522–2535.

    Frens, M. A. & Van Opstal, A. J. (1994). Transfer of short term adaptation in. human saccadic eye movements. Experimental Brain Research. 100, 293–306.

    Gianutsos, R. (1997). Vision rehabilitation following acquired brain injury, in Gentile M: Functional Visual Behavior: A Therapist’s Guide to Evaluation and Treatment Options. Bethesda,MD, American Occupational Therapy Association, 267–294.

    Goebel, Rainer, Muckli, Lars & Kim, Dae- shik (2004). Visual System. In Paxinos, George, Mai, K., Jrgen (Eds.), The Human Nervous System (2nd ed.), (pp. 1280-1305). San Diego, California: Elsevier Academic Press.

    Gaymard, B., Pierrot-Deseilligny, C. H., & Rivaud, S. (1990). Impairment of sequence of memory-guided saccades after supplementary motor area lesions. Annals of neurology, 28,622-626.

    Gaymard, B., Rivaud, S., & Pierrot-Deseilligny, C. H. (1993). Role of the left and right supplementary motor area in memory-guided sequences. Annals of neurology, 34, 404-406.

    Gamlin, P. D. R., & Zhang, H. (1996). Effects of muscimol blockade of the posterior fastigial nucleus on vergence and ocular accommodation in the primate. Society for Neuroscience Abstracts, 22, 2034

    Gamlin P. D. R., & Mays, L. E. (1992). Dynamic properties of medial rectus motoneuron during vergence eye movements. Journal of Neurophysiology, 67, 64–74.

    Gamlin P. D. R, Yoon, K., & Zhang, H. (1996). The role of cerebro-ponto-cerebellar pathways in the control of vergence eye movements. Eye, 10, 167–171.

    Gonshor, A., & Melvill, J. G. (1973). Changes of human vestibuloocular response induced by vision-reversal during head rotation. Journal of Physiology, 234, 102–103.

    Green, A., & Galiana, H. L. (1995). Modelling on-line adaptation of the VOR gain with target distance and eccentricity, in Proc. 17th IEEE EMBS, Montreal, Que. September 20-23, 1459-1460.

    Han, S. J. Guo., Y. Granger-Donetti, B., & Alvarez, T. L. (2008). Quantification of Heterophoria and Vergence Adaptation Using an Automated Objective System. Submitted.

    Hiromitsu, T., Kenji, Y., & Mitsuo, K. (2001). Computational Study on Monkey VOR Adaptation and Smooth Pursuit Based on the Parallel Control-Pathway Theory. Journal of Neurophysiology., 87, 2176–2189.

    Hellerstein, L. F., Freed, S., & Maples, W. C. (1995). Vision profile of patients with mild brain injury. Journal of the American Optometric Association., 66, 634-639.

    Hain, T. C., & Luebke, A. E. (1990). Phoria adaptation in patients with cerebellar dysfunction. Investigative ophthalmology & visual science, 31, 1394-1397.

    Hung, G. K., Semmlow, J. L., & Ciuffreda, K. J. (1986). A dual-mode dynamic model of the vergence eye movement system. IEEE Transactions on Biomedical Engineering, 33, 1021-1028.

    Hikosaka, O., & Wurtz, R. H. (1989). The basal ganglia. In: Wurtz RH, Goldberg ME, editors. The neurobiology of saccadic eye movements: Review of oculomotor research. Elservier, Amsterdam, 3, 257-281.

    Hung, G.. K., Zhu, H., & Ciuffreda, K. J. (1997). Convergence and divergence exhibit different response characteristics to symmetric stimuli. Vision Research, 37. 1197-1205.

    Hung, G. K. (1992). Adaptation model of accommodation and vergence. Ophthalmic and Physiological Optics, 12, 319–326.

    Hung, G. K., Ciuffreda, K. J., Semmlow, J. L., & Horng, J.-L. (1994). Vergence eye movements under natural viewing conditions. Investigative Ophthalmology and Visual Science, 35, 3486–3492.

    Hung, G. K. & Semmlow, J. L. (1980). Static behavior of accommodation and vergence: computer simulation of an interactive dual-feedback system. IEEE Transactions on Biomedical Engineering, 27, 439-447.
    Hung, G. K. & Ciuffreda, K. J. (2002). Models of the Visual System”, N. Y. USA , Kluwer Academic/Plenum Publishers, chap. 9, 355-357

    Horng, J. L., Semmlow, J. L., Hung, G. K., & Ciuffreda, K. J. (1998). Dynamic asymmetries in disparity convergence eye movements. Vision Research, 38(18), 2761-2768.

    Jrgens, R., Becker, W., & Kornhuber, H. H. (1981). Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biological Cybernetics, 39, 87-96.

    Jones R., & Stephens G. L. (1989), Horizontal fusional amplitudes. Evidence for disparity tuning. Investigative Ophthalmology & Visual Science, 30, 1638-1642.

    Jones, R. (1980). Fusional vergence: Sustained and transient components. American Journal of Optometry and Physiological Optics, 57, 640-644.

    Jiang, B. C., Hung, G. K., & Ciuffreda, K. J. (2002) Models of Vergence and Accommodation-Vergence Interactions In Models of the Visual System. Kluwer Academic/ Plenum Publishers, New York, NY, 341 – 360.

    Jiang, B. C., Tea, T. C., & O’Donnell, D. (2007). Changes in accommodative and vergence responses when viewing through near addition lenses. Optometry, 78, 129-134.

    Kapoor, N., & Ciuffreda, K. J. (2002). Vision Disturbances Following Traumatic Brain Injury. Current Treatment Options in Neurology, 4, 271-280.

    Kowler, E. (1991). The stability of gaze and its implications for vision. In Eye Movements. ed. Carpenter RHS. Macmillan, 7, 71-92.

    Krauzlis, R. J. (2005). The control of voluntary eye movements: new perspectives. The Neuroscientist, 11, 124-137.

    Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000).Principles of Neural Science 4rd.

    Krishnan, V. V., Farazia, F., & Stark, L. (1973). An analysis of latencies and prediction in the fusional vergence system. American Journal of Optometry and Archives of American Academy of Optometry, 50, 933–939

    Kapoula, Z., Bertre, H. L., Yang, Q., & Bucci, M. P.(2004). Latency of saccades, vergence and combined saccade vergence movements in a subject with manifest latent nystagmus. Strabismus, 12, 157-67.

    Kumar, A. N., Han, Y., Dell’osso, L. F., Durand, D. M., & Leigh, R.J. (2005) Directional asymmetry during combined saccade-vergence movements. Journal of Neurophysiology, 93, 2797-2808.

    Krishnan, V. V., & Stark, L. (1977). A heuristic model for the human vergence eye movement system. IEEE Transactions on Biomedical Engineering, 24, 44–49.

    Kahlon, M., & Lisberger, S. G. (1996). Coordinate system for learning in the smooth pursuit eye movements of monkeys. Journal of Neuroscience ,16,7270-7283,.

    Kommerell, G., Olivier, D., & Theopold, H. (1976). Adaptive programming of phasic and tonic components in saccadic eye movements. Investigative Ophthalmology & Visual Science, 15, 657–660.

    Kumiko, W., Nobuyuki, S., Yasue, K., Kazuo, M., & Kimiya, S. (2006). Change in phoria adaptation in relation to age. Journal of the Eye, 23, 273-276.

    Lisberger, S.G., Morris, E., & Tychsen, L. (1987). Visual motion processing and sensorymotor integration for smooth pursuit eye movements. Annual Review of Neuroscience, 10, 97-129.

    Leigh, R. J., & Zee, D. S. (1999). The neurology of eye movements. 3rd ed. Oxford University Press.

    Mitchell, A. M., & Ellerbrock, V. J. (1955). Fixational disparity and the maintenance of fusion in the horizontal meridian. American journal of optometry and archives of American Academy of Optometry, 32, 520–534.

    Mays, L. E., Porter, J. D., Gamlin, P. D. R., & Tello, C. A. (1986). Neural control of vergence eye movements: Neurons encoding vergence velocity. Journal of Neurophysiology, 56, 1007–1021.
    Munoz, P., Semmlow, J. L., Yuan, W., & Alvarez; T. L. (1999). Short-term modification of vergence eye movements. Vision Research, 39, 1695-1705.

    Bucci, M. P., Kapoula, Z., Yang, Q., & Brmond-Gignac, D. (2006). Latency of saccades, vergence, and combined movements in children with early onset convergent or divergent strabismus. Vision Research ,46, 1384-1392.

    Maxwell, J. S., & King, W. M. (1992). Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys. Journal of Neurophysiology, 68(4), 1248-1260.

    Mays, L. E. (1984). Neural control of vergence eye movements: Convergence and divergence neurons in midbrain. Journal of Neurophysiology, 51, 1091–1108.

    Mays, L. E., & Porter, J. D. (1984). Neural control of vergence eye movements: Activity of abducens and oculomotor neurons. Journal of Neurophysiology, 52, 743–761.

    Morley, J. W., Judge, S. J., & Lindsey, J. W. (1992). Role of monkey midbrain near-response neurons in phoria adaptation, Journal of neurophysiology, 67, 1475-1492.

    Milder, D. G., & Reinecke, R. D. (1983). Phoria adaptation to prisms: a cerebellar dependent response. Archives of neurology, 40, 339-342.

    Nolte, J. (2002). The Human Brain (5th ed.). Mosby, Inc. An affiliate of Elsevier, St. Louis, Missouri 63146

    Nelson, Ralph.Visual Responses of Ganglion Cells. Retrieved October 2007, from
    http://webvision.med.utah.edu/GCPHYS1.HTM

    Nitta, T., Akao, T., Kurkin, S., & Fukushima, K. (2008). Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys. Cerebral Cortex, 18, 1042-1057.

    Optican, L. M. (1995). A field theory of saccade generation: Temporal-to-spatial transform in the superior colliculus. Vision Research, 35,3313-3320.

    Ogawa, T., & Fujita, M. (1997). Adaptive modifications of human postsaccadic pursuit eye movements induced by a step-ramp-ramp paradigm. Experimental Brain Research, 116 (1), 83–96.

    Oohira, A., Zee, D. S. & Guyton, D. L. (1991). Disconjugate adaptation to long-standing, large-amplitude, spectacle-corrected anisometropia. Investigative Ophthalmology and Visual Science, 32, 1693-1703.

    Ogle, K. N., Avery, D. H., & Prangen, A. (1951). Further considerations of fixation disparity and the binocular fusional process. American Journal of Optometry and Archives of American Academy of Optometry,. 34, 57–72.

    Poggi, G., Calori, G., Mancarella, G., Colombo, E., Profice, P., Martinelli, F., Triscari, C., & Castelli, E. (2000). Visual disorders after traumatic brain injury in developmental age. Brain Injury, 14, 833-845.

    Pobuda, M., & Erkelens, J. (1993). The relationship between absolute disparity and ocular vergence. Biological Cybernetics, 68, 221-228.

    Patel, S. S., Ogmen, H., White, J. M., & Jiang, B. C. (1997). Neural network model of short-term horizontal disparity vergence dynamics. Vision Research, 37(10), 1383–1399.

    Petit, L., Clark, V. P., Ingeholm, J., & Haxby, J. V. (1997). Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. Journal of Neurophysiology, 77, 3386-3390.

    Berthoz, A., Rivaud, S., & Gaymard, B. (1993). Role of the different frontal lobe areas in the control of the horizontal component of memory-guided saccades in man. Experimental Brain Research, 95, 166-171.

    Patel, S. S., Jiang, B. C., White, J. M., & Ogmen, H. (1999) Nonlinear alteration of transient vergence dynamics after sustained convergence. Investigative Ophthalmology and Visual Science, 76(9), 656-663.

    Robinson, D. A. (1975). Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications. Edited by G Lennerstrand and P Bach-y-Rita. Oxford UK, Pergamon 337-374.

    Robinson, D. A., Gordon, J. L., & Gordon, S. E. (1986). A model of the smooth pursuit eye movement system. Biological Cybernetics, 55, 43-57.

    Rashbass, C., & Westheimer, G. (1961). Disjunctive eye movements. Journal of Physiology, 159, 339-360.

    Robinson, F. R., & Fuchs, A.F. (2001). The role of the cerebellum in voluntary eye movements. Annual Review of Neuroscience, 24, 981-1004.

    Robinson, F. R., Straube, A., & Fuchs, A. F. (1993). Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. Journal of Neurophysiology, 70, 1741–58

    Rambold, H., Sander, T., Neumann, G., & Helmchen, C. (2005). Palsy of "fast" and "slow" vergence by pontine lesions. Neurology, 64, 338-340.

    Rambold, H., Neumann, G., Sander, T., & Helmchen, C. (2006). Age-related changes of vergence under natural viewing conditions. Neurobiology of Aging, 27(1), 163-172.

    Kono, R., Hasebe, S., Ohtsuki, H., Kashihara, K., & Shiro, Y. (2002). Impaired Vertical Phoria Adaptation in Patients with Cerebellar Dysfunction , Investigative Ophthalmology and Visual Science, 43, 673-678.

    Scheiman, M., Mitchell, G. L., Cotter, S., Kulp, M. T., Cooper, J., Rouse, M., Borsting, E., London, R., & Wensveen, J. (2005). A randomized clinical trial of vision therapy/orthoptics versus pencil pushups for the treatment of convergence insufficiency in young adults. Optometry and Vision Science, 82(7), 583-595.

    Schroeder, T. L., Rainey, B. B., Goss, D. A. & Grosvenor, T. P. (1996). Reliability of and comparisons among methods of measuring dissociated phoria. Optom. Vis. Sci. 73, 389-397.

    Schor, C. M. (1983). Fixation disparity and vergence adaptation. In: Schor CM, Ciuffreda KJ (eds) Vergence eye movements: basic and clinical aspects. Butterworths, Woburn, MA, 465–516

    Sethi, B., (1986). Heterophoria: a vergence adaptive position. Ophthalmic and Physiological Optics, 6, 151-156.

    Scudder, C. A.(1988). A new local feedback model of the saccadic burst generator. Journal of Neurophysiology, 59, 1455-1475.
    Semmlow, J. L., Hung, G.. K., & Ciuffreda, K. J. (1986). Quantitative assessment of disparity vergence components. Investigative Ophthalmology and Visual Science, 27, 558-564.

    Semmlow, J. L., Hung, G. K., Horng, J. L., & Ciuffreda, K. J. (1993). Initial control component in disparity vergence eye movements. Ophthalmic and Physiological Optics, 13, 48-55

    Semmlow, J., & Wetzel, P. (1979). Dynamic contributions of the components of binocular vergence. Journal of the Optical Society of America, 69, 639–645.

    Semmlow, J. L., Hung, G. K., Horng, J. L., & Ciuffreda, K. J. (1994). Disparity vergence eye movements exhibit preprogrammed motor control,” Vision Research, 34, 1335–1343.

    Semmlow J. L. & Yuan W. (2002). Adaptive Modification of Disparity Vergence Components: An Independent Component Analysis Study. Invest. Investigatve Ophthalmology & Visual Science, 43(7): 2189 - 2195.

    Segraves, M. A., & Goldberg, M. E. (1987). Functional properties of corticotectal neurons in the monkey’s frontal eye field. Journal of Neurophysiology, 58, 1387-1418.

    Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., & Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movement and spatial working memory. Journal of Neurophysiology,75, 454-468.

    Schor, C., (1988). Influence of accommodative and vergence adaptation on binocular motor disorders. American Journal of Optometry and Physiological Optics, 65, 464-475.

    Schor, C. M. (1979). The relationship between fusional vergence eye movements and fixation disparity, Vision Research., 19, 12, 1359–1367.

    Snow, R., Hore, J., & Vilis, T. (1985). Adaptation of saccadic and vestibulo-ocular systems after extraocular muscle tenectomy. Investigative Ophthalmology & Visual Science, 26, 924–931.

    Schor, C. M., Gleason, J., & Horner, D. (1990). Selective nonconjugate binocular adaptation of vertical saccades and pursuits. Vision Research, 11, 1827-1844.

    Snow, R., Hore, J. & Vilis, T. (1985). Adaptation of saccadic and vestibulo-ocular systems after extraocular muscle tenectomy. Investigative Ophthalmology and Visual Science Suppl., 26, 924-931.

    Straube, A., Fuchs, A. F., Usher, S., & Robinson, F. R. (1997). Characteristics of saccadic gain adaptation in rhesus macaques. Journal of Neurophysiology, 77, 874–895.

    Shebilske, W. L., Karmiohl, C. M., & Proffitt, D. R. (1983). Induced esophoric shifts in eye convergence and illusory distance in reduced and structured viewing conditions. Journal of experimental psychology. Human perception and performance, 9, 270-277.

    Schor, C. M., & Narayan, V. (1982). Graphical analysis of prism adaptation, convergence accommodation, and accommodative convergence. American Journal of Optometry and Physiological Optics, 59, 774-784.

    Saladin, J. J. (1986). Convergence insufficiency, fixation disparity, and control systems analysis. American Journal of Optometry and Physiological Optics, 63, 645–653.

    Schor, C. M. (1992). A dynamic model of cross-coupling between accommodation and convergence: Simulations of step and frequency responses, Ophthalmology and Visual Science, 69, 258-69.

    Tweed, D., & Vilis, T. (1985). A two dimensional model for saccade generation. Biol Cybern , 52, 219-227.

    Takagi, M., Oyamada. H., Abe, H., Zee, D. S., Hasebe, H., Miki, A., Usui, T., Hasegawa, S., & Bando, T. (2001). Adaptive changes in dynamic properties of human disparity-induced vergence. Investigatve Ophthalmology & Visual Science. 42, 1479–1486.

    Takagi, M., Tamargo, R., & Zee, D. S. (2003). Effects of lesions of the cerebellar oculomotor vermis on eye movements in primate: binocular control. Progress in brain research , 42,19-33.

    Toates, F. M. (1974). Vergence eye movements. Documental Opthalmology, 37, 153–214.

    Tabata, H., Yamamoto, K., & Kawato, M. (2002).Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory. Journal of Neurophysiology, 87, 2176-2189.

    Nitta, T., Akao, T., Kurkin, S., & Fukushima, K. (2008). Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys. Cerebral Cortex, 18, 1042-1057.

    Takagi, M., Zee, D. S., & Tamargo, R. J. (2000). Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. Journal of Neurophysiology. 83, 2047-2062.

    Vilis, T., & Hore, J. (1981). Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. Journal of Neurophysiology, 46, 828–38.

    Waitzman, D. M., Ma, T. P., Optican, L. M., & Wurtz, R. H. (1991). Superior colliculus neurons mediate the dynamic characteristics of saccades. Journal of Neurophysiology, 66,1716-1737.

    Yasui, S., & Young, L. R. (1975). Perceived visual motion as effective stimulus to pursuit eye movement system. Science, 190, 906-908.

    Yang, Q., Bucci, M. P., & Kapoula, Z. (2002). The latency of saccades, vergence, and combined eye Movements in children and in adults. Investigative Ophthalmology and Visual Science, 43, 2939–2949.

    Ying, S. H., & Zee, D. S. (2006). Phoria adaptation after sustained symmetrical convergence: Influence of saccades. Experimental brain research, 171, 297-305.

    Yekta, A. A., Jenkins, T., & Pickwell, D. (1987). The clinical assessment of binocular vision before and after a working day. Ophthalmic and Physiological Optics, 7, 349-52.
    Yuan, W., Semmlow J. L., Alvarez, T. L., & Munoz, P. (1999). Dynamics of the Disparity Vergence Step Response: A Model based Analysis. IEEE Transactions on Biomedical Engineering, 46, 1191-1198.

    Zee, D. S., Fitzgibbon, E. J., & Optican, L. M. (1992). Saccade-vergence interactions in humans. Journal of Neurophysiology, 68, 1624-1641.

    Zhang, H. Y., & Gamlin, P. D. R. (1998). Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. Journal of Neurophysiology, 79, 1255-1269.

    Zhang, H. Y., Gamlin, P. D. R., & Mays L, E. (1991). Antidromic identification of midbrain near response cells projecting to the oculomotor nucleus. Experimental Brain Research, 84, 525–528.

    Zee, D. S.,, & Chu, F. C. (1985). Adaptive changes to ocular muscle weakness in human pursuit and saccadic eye movements. Journal of Neurophysiology, 54, 110-122.

    下載圖示 校內:立即公開
    校外:2008-10-13公開
    QR CODE