簡易檢索 / 詳目顯示

研究生: 陳顗同
Chen, I-Tung
論文名稱: 寄主細胞粒線體與白點症病毒致病機轉之相關性
Virus-host interaction: the role of mitochondria in the pathogenesis of white spot syndrome virus infection
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 白蝦白點症病毒粒線體代謝質體學
外文關鍵詞: Litopenaeus vannamei, WSSV, Mitochondria, Metabolomics
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣過去素有「草蝦王國」的美名,但於1990年代所爆發的蝦白點症徹底瓦解了台灣的草蝦產業,直到今日科學家們對於解決白點症病毒感染問題依舊束手無策。根據研究蝦白點症病毒感染後白蝦胃組織圖譜分析(protein profile)以及白點症病毒感染後蝦類淋巴組織基因表現微陣列分析(microarray)之結果,推測蝦類粒線體在白點症病毒感染後應扮演重要角色。粒線體相關的蛋白質中,粒線體外膜主要蛋白-電位調控型離子通道(voltage-dependent anion channel, VDAC)於白點症病毒感染後表現量明顯上升,而其上游調控基因hexokinase表現量呈現下降趨勢。這種白點症病毒感染後引發 hexokinase 與 VDAC 之間失衡狀態,可能造成粒線體通透性孔洞過度開啟,導致粒線體膜電位喪失、內外離子平衡破壞、 ATP/ADP 能量代謝異常、粒線體胞器腫脹及破裂、產生大量活性氧物質(ROS),驅使細胞死亡。本研究目的在於建構白點症病毒於粒腺體層次上的致病機轉以及宿主對於病毒感染後之反應相關研究。實驗結果發現白點症病毒感染時程以24小時為一複製循環,蝦類於白點病毒感染後12至24小時間,病毒進行快速複製,醣類代謝路徑受到改變,快速行使類似 Warburg effect 之醣類乳酸發酵反應,造成醣解中間反應物累積,促進代謝途徑轉至五碳醣循環反應,提供病毒複製所需物質,此外細胞脂質代謝被大量促進,推測提供細胞替代性之能量來源。於病毒第一個複製循環末期,即病毒將進行釋出動作之時,此時醣類代謝活動被抑制、粒線體膜電位喪失、 ADP/ATP 比值高等現象,將細胞趨於功能化喪失導致其走向死亡。本研究所得為白點症病毒感染過程中,建立新穎性方向之致病機轉,期望未來可藉由更深入的研究,釐清相關細胞代謝路徑於白點症病毒感染後之改變,從中思考對於疾病的治療及防範策略。

    White spot syndrome virus (WSSV) is the causative pathogen of white spot disease (WSD), a disease with great impact on the cultured shrimp industry. Pathogenesis of WSSV, however, is poorly understood. It has been postulated that mitochondria may play an important role during WSSV pathogenesis, and that mitochondrial dysfunction may be involved in cell death. Materials move in and out of the mitochondria via the mitochondrial permeability transition pore (MPTP). The outermost area of the pore is critically important in permeability and is composed of a single protein, the voltage dependent anion channel (VDAC) protein. Previous studies found that host VDAC is upregulated after WSSV infection, suggesting a mitochondrial role in pathogenesis. Preliminary microarray analysis showed that hexokinase was down-regulated after WSSV infection. Hexokinase mediates the opening of MPTP, and is also involved in a key metabolic pathway, the glycolytic pathway. There are 3 parts to this study. Because imbalanced VDAC-hexokinase interaction may result in mitochondrial membrane permeabilization (MMP), the study is the first investigation about the impact of WSSV on mitochondrial activity. Three factors (mitochondrial membrane potential, energy production, and oxidative stress) were assessed over a pre- and post-infection time period (0, 12, 24, 36, 48, 60 and 72 hours post-infection). The data showed that beginning at 24h post-WSSV challenge, and increasing over time, host hemocytes showed loss of mitochondrial membrane potential. Also beginning 24 h post-infection, energy production was disrupted (shown in increased ADP/ATP ratio). No oxidative stress was detected. This clearly shows that mitochondrial function was disrupted. Because hexokinase is also involved in glycolysis, fatty acid metabolism and the pentose phosphate pathway (PPP), the second part of this study analyzed their post-infection changes. Amounts of glucose and lactate (for glycolysis), triglycerides (for fatty acid metabolism) and the activity of G6PDH, the key enzyme in the pentose phosphate pathway (PPP) were measured at the same post-infection time points. The data show that at 24 h post-infection glucose concentration was higher than in control group. This indicates that glycolysis was down-regulated. Beginning at 12 h, triglyceride concentration in the infected group was significantly lower than in the control group. G6PDH activity was higher than the control group at 12 and 36 h. As the infection progressed, there was a temporal flux in metabolites. In order to clarify the viral life cycle, and explain the metabolic flux, we further quantified WSSV replication efficiency and found that replication efficiency was highest at 24 h. It appears that the replication cycle and the changed metabolic flux are parallel. Overall the results of this study support the view that viral replication and release are clearly related to metabolic changes in the cell as well as changes in mitochondrial activity.

    中文摘要 3 Abstract 5 誌謝 8 目錄 10 前言 12 材料與方法 21 白點症病毒來源、感染試驗及實驗動物 21 白點症病毒致死濃度(lethal dose)測試 21 Hexokinase 基因於白蝦 L. vannamei 體內表現之組織特異性(tissue tropism) 22 利用蝦體內基因沉默化探討目標致病機轉路徑在病毒感染過程之相關性 24 觀測蝦血球細胞之粒線膜電位在白點症病毒感染過程的變化 25 觀測蝦血球細胞之 ADP/ATP 比值在白點症病毒感染過程的變化 27 觀測蝦血球細胞之 ROS 在白點症病毒感染過程的變化 28 觀測蝦血球細胞之 H2O2 濃度在白點症病毒感染過程的變化 28 蝦血清中 glucose 濃度於白點症病毒感染過程的變化 29 蝦血清中 lactate 濃度於白點症病毒感染過程的變化 30 蝦血漿中 triglyceride 濃度於白點症病毒感染過程的變化 31 觀測蝦血球細胞之 G6PDH 酵素活性在白點症病毒感染過程的變化 32 觀察蝦類組織內於白點症染病毒過程之病毒顆粒累積變化 33 結果 36 白點症病毒致死濃度(lethal dose)測試結果 36 Hexokinase基因普遍表現於於白蝦體內之各組織 36 蝦體內hexokinase基因沉默化不會促進或是降低白點症病毒感染所導致之死亡率 37 蝦血球細胞初代培養平台之建立 38 白點症病毒感染過程造成蝦血球細胞之粒線膜電位喪失 39 白點症病毒感染造成蝦血球細胞具有較高的ADP/ATP比值 40 白點症病毒感染並不會造成蝦血球細胞 ROS 的累積 41 白點症病毒感染並不會造成蝦血球細胞 H2O2 的累積 41 蝦血清中 glucose 濃度於白點症病毒感染過程末期大量下降 42 蝦血清中 lactate 濃度於白點症病毒感染過程末期大量下降 43 蝦血清中 triglyceride 濃度於白點症病毒感染過程中皆大量下降 44 在白點症病毒感染過程之特定時間點可偵測到蝦血球細胞中之 G6PDH酵素具有較高活性表現 45 白點症病毒於感染後蝦類組織內之累積情況 46 討論 48 參考文獻 60 實驗圖表 65 Table 1、 PCR primers used in this study 65 Figure 1、白點症病毒感染源致死濃度劑量之建立 66 Figure 2、蝦體內 hexokinase 基因表現量之組織特異性比較 67 Figure 3、蝦體內 hexokinase 基因沉默化不會促進或是降低白點症病毒感染所導致之死亡率 68 Figure 4、初代培養之蝦血球細胞於顯微鏡視野下之三種蝦血球細胞型及細胞形態 69 Figure 5、白點症病毒感染過程造成蝦血球細胞之粒線膜電位喪失 70 Figure 6、白點症病毒感染後蝦血球細胞之 ADP/ATP 比值 71 Figure 7、白點症病毒感染不會造成蝦血球細胞 ROS 的累積 72 Figure 8、白點症病毒感染不會造成蝦血球細胞 H2O2 的累積 73 Figure 9、白點症病毒感染過程中蝦血清 glucose 濃度之變化 74 Figure 10、白點症病毒感染過程對蝦血漿中 lactate 之變化 75 Figure 11、白點症病毒感染過程中蝦血漿 triglyceride 濃度之變化 76 Figure 12、白點症病毒感染過程中,蝦血球細胞 G6PDH 酵素活性表現之變化 77 Figure 13、蝦類組織內於白點症染病毒過程之病毒顆粒累積變化 78 Figure 14、本研究中所建立之白點症病毒代謝路徑改變假說圖 79 附錄1. 白點症病毒在 mitochondria transition pore 的調節假說圖 80 附錄2. Mitochondria transition pore過度開啟後所導致之數個mitochondria-mediate cell death 路徑圖 81

    1. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V. (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J. Biol. Chem. 283:13482-13490.

    2. Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V. (2009) Voltage-dependent Anion Channel 1-based Peptides Interact with Hexokinase to Prevent Its Anti-apoptotic Activity. J. Biol. Chem. 284:3946-3955.

    3. Bahamonde MI, Fernández-Fernández JM, Guix FX, Vázquez E, Valverde MA. (2003) Plasma membrane voltage-dependent anion channel mediates antiestrogen-activated maxi Cl- currents in C1300 neuroblastoma cells. J. Biol. Chem. 278:33284-33289.

    4. Baker MA, Lane DJ, Ly JD, De Pinto V, Lawen A. (2004) VDAC1 is a transplasma membrane NADH-ferricyanide reductase. J. Biol. Chem. 279:4811-4819.

    5. Beutner G, Rück A, Riede B, Brdiczka D. (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1368:7-18.

    6. Chen LL, Leu JH, Huang CJ, Chou CM, Chen SM, Wang CH, Lo CF, Kou GH. (2002) Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology. 293:44-53.

    7. Dunn WB, Ellis DI. (2005) Metabolomics: current analytical platforms and methodolgies. Trends in Anal. Chem. 24:285-294.

    8. Deborah L. Diamond, Andrew J. Syder, Jon M. Jacobs, Christina M. Soresn, Kathie-Anne Walters, Sean C. Proll, Jason E. McDermott, Marina A. Gritsenko, Qibin Zhang, Rui Zhao, Thomas O. Metz, David G. Camp, II, Katrina M. Waters, Richard D. Smith, Charles M. Rice, Michael G. Katze. (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLos Pathog. 6:e1000719.

    9. Feng Yan, Ding Xia, Jia Hu, Huixing Yuan, Tingting Zou, Qing Zhou, Lihua Liang, Yipeng Qi, Hua Xu. (2010) Heat shock protein 70 gene is required for prevention of apoptosis induced by WSSV infection. Arch Viol. 155:1077-1083.

    10. Gogvadze V, Zhivotovsky B, Orrenius S. (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med. 31:60-74.

    11. Gomez-Angelats, M., C.D. Bortner, and J.A. Cidlowski. (2000) Cell volume regulation in immune cell apoptosis. Cell Tissue Res. 301:33-42.

    12. Halestrap AP, Doran E, Gillespie JP, O'Toole A. (2000) Mitochondria and cell death. Biochem Soc Trans. 28:170-177.

    13. Hatherill JR, Till GO, Ward PA. (1991) Mechanisms of oxidant-induced changes in erythrocytes. Agents Actions. 32:351-358.

    14. Karunasagar I, Otta SK, Karunasagar I. (1998) Disease problems affecting cultured penaeid shrimp in India. Fish Pathology. 33:413-419.

    15. Lieven J. Stuyver, Tamara R. McBrayer, Phillip M. Tharnish, Abdalla E. A. Hassan, Chung K. Chu, Krzysztof W. Pankiewicz, Kyochi A. Watanabe, Raymond F. Schinazi, and Michael J. Otto. (2003) Dynamics of subgenomic hepatitis c virus Replicon RNA levels in Huh-7 cells after exposure to nucleoside antimetabolites. J. Virol. 77:10689-10694.

    16. Lucas Bukata, Silvia Altabe, Diego de Mendoza, Rodolfo A. Ugalde, Diego J. Comerci (2008) Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. 190:8197-8203.

    17. Magbanua FO, Natividad KT, Migo VP, Alfafara CG, de la Peña FO, Miranda RO, Albaladejo JD, Nadala EC Jr, Loh PC, Mahilum-Tapay L. (2000) White spot syndrome virus (WSSV) in cultured Penaeus monodon in the Philippines. Dis Aquat Organ. 42:77-82.

    18. Morel, Y. and R. Barouki. Repression of gene expression by oxidative
    stress. (1999) Biochem J. 342:481-496.

    19. Moin SM, Panteva M, Jameel S. (2007) The hepatitis E virus Orf3 protein protects cells from mitochondrial depolarization and death. J. Biol. Chem. 282:21124-21133.

    20. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2:e132.

    21. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD. (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol. 26:1179-1186.

    22. Otta SK, K.I. (1998) Disease problems affecting cultured penaeid shrimp in India. Fish Pathology. 33:413-419.

    23. Pastorino, J.G., N. Shulga, and J.B. Hoek. (2002) Mitochondrial Binding of Hexokinase II Inhibits Bax-induced Cytochrome c Release and Apoptosis. J. Biol. Chem. 277:7610-7618.

    24. Pastorino, J.G., J.B. Hoek, and N. Shulga. (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 65:10545-10554.

    25. Pinto V, Messina A, Lane DJ, Lawen A. (2010) Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett. 584:1793-1799.

    26. Ralph J. DeBerardinis, Anthony Mancuso, Evgueni Daikhin, Ilana Nissim, Marc Yudkoff, Suzanne Wehrli, and Craig B. Thopson. (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism the exceeds the requirment for protein and nucleotide synthesis. Proc Nati Acad Sci USA. 104:19345-19350.

    27. State of world aquaculture 2006 FAO Fisheries Technical Paper (2006)

    28. Schindler J, Lewandrowski U, Sickmann A, Friauf E, Nothwang HG. (2006) Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol Cell Proteomics. 5:390-400.

    29. Shoshan-Barmatz V, Keinan N, Zaid H. (2008) Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr. 40:183-191.

    30. Stetten MR, Goldsmith PK. (1981) Two hexokinases of Homarus americanus (lobster), one having great affinity for mannose and fructose and low affinity for glucose. Biochim Biophys Acta. 657:468-481.

    31. Stockwin LH, Blonder J, Bumke MA, Lucas DA, Chan KC, Conrads TP, Issaq HJ, Veenstra TD, Newton DL, Rybak SM. (2006) Proteomic analysis of plasma membrane from hypoxia-adapted malignant melanoma. J Proteome Res. 5:2996-3007.

    32. Vander Heiden MG, Cantley LC, Thompson CB. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029-1033.

    33. Wang HC, Wang HC, Leu JH, Kou GH, Wang AH, Lo CF. (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol. 31:672-686.

    34. Wang Han-Ching KC, Kondo H, Hirono I, Aoki T. (2010) The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol. 29:94-103.

    35. Wang Z, Hu L, Yi G, Xu H, Qi Y, Yao L. (2004) ORF390 of white spot syndrome virus genome is identified as a novel anti-apoptosis gene. Biochem Biophys Res Commun. 325:899-907.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE