| 研究生: |
陳永鋒 Chen, Yung-Feng |
|---|---|
| 論文名稱: |
高嶺土–氧化鋁陶瓷中富鋁紅柱石之形成 Mullite formation in kaolin-Al2O3 ceramics |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 活化能 、富鋁紅柱石 、燒結 、伸長型板狀 、高嶺土 |
| 外文關鍵詞: | activation energy, mullite, Kaolin, elongated plate-like, sintering. |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
富鋁紅柱石之機械性質優異且化學穩定性佳,在傳統與尖端陶瓷中皆是歷久彌新的研究主題。探索高嶺土–氧化鋁陶瓷中一次及二次富鋁紅柱石之形成與成長,將有助於富鋁紅柱石陶瓷之功能設計與製備。
本研究以高嶺土–氧化鋁粉末為原料,利用X光繞射、熱分析、高解析分析電子顯微鏡、熱膨脹儀與水銀測孔儀等,分析其相變化、一次及二次富鋁紅柱石之形成、晶體結構與化學組成及試樣之燒結與孔隙特性。
研究結果顯示,燒結60 wt. %高嶺土– 40 wt. %氧化鋁陶瓷時,「一次富鋁紅柱石」在1273至1573 K階段由高嶺土中相變化形成,「二次富鋁紅柱石」在1573至1873 K階段以「溶解–析出」機制由玻璃相中析出。
一次富鋁紅柱石之形成活化能為1182.3 kJ/mol且為固定晶核數之「體成核機制」。試樣經1573 K燒結180分鐘後,再於1673 ~ 1873 K經不同時間燒結之試樣可明確得二次富鋁紅柱石含量,其形成活化能為454.6 kJ/mol。兩者皆為平板狀晶粒析出且隨溫度升高而長為伸長型板狀,隨晶粒寬度成長各達70及40 nm時,晶粒中Al含量增高但斜方晶格常數降低而趨於3/2富鋁紅柱石。
高嶺土–氧化鋁陶瓷燒結過程之收縮現象可區分為四個階段,一為高嶺土轉變為偏高嶺土之813 ~ 1223 K,二為形成一次富鋁紅柱石與玻璃相之1223 ~ 1273 K,三為燒結緻密化過程在1273 ~ 1473 K之間,最後為1473 ~ 1723 K時伸長型板狀富鋁紅柱石形成。在1373 ~ 1873 K燒結1小時後之燒結體孔隙為「單峰分佈模式」,孔隙體積隨溫度之升高而減小,但平均孔徑由0.6增為1.5 mm。伸長型板狀富鋁紅柱石形成之骨架結構,不只阻礙緻密化進行,更使平均孔徑與開孔孔隙率增大,亦因伸長型板狀晶粒在黏滯流動的玻璃相中成長時,促使燒結體外觀尺寸增大。
Abstract
Mullite (3Al2O3×2SiO2), a well-known component in conventional ceramics, has been considered to have potential in some advanced applications as a structural ceramic material due to it’s excellent mechanical strength and chemical stability. Seemingly, a thorough understanding of the mullite formation may provide some unique features of processing advanced ceramics with respect to its structural as well as functional characteristics.
In this study, the phase transformation of kaolin-Al2O3 ceramics and the formation, crystal structure and chemical composition of the “primary” and “secondary” mullites have been identified using the XRD, HR-AEM. Sintering behavior and pore properties have been investigated using TMA and mercury porosimeter.
For the phase transformation of 60 wt. % kaolin- 40 wt. % Al2O3 ceramics, the primary mullite is transformed from kaolin in 1273 to 1573 K and the secondary mullite is precipitated from the glassy phase by the “solution- precipitation mechanism” in 1573 to 1873 K.
The formation activation energy of the primary mullite is 1182.3 kJ/mol and reveals the “bulk nucleation mechanism” with constant nuclei. The activation energy of secondary mullite formation is 454.6 kJ/mol as quantitative analysis as sintered at 1573 K for 180 min and subsequently heating at 1673 to 1873 K for various times. Both of primary and secondary mullites, the square plate-like crystal grow to elongated plate-like one with increasing the sintering temperature. The Al content in the mullite crystal increases but the lattice parameters of the orthorhombic structure decrease, tending to be a 3/2 mullite, as the primary and secondary mullite grains grow to 70 and 40 nm in width, respectively.
In the sintering behavior and pore structure development of kaolin-Al2O3 ceramics, linear shrinkage of the heated sample occurs at four stages during sintering. The sintered sample shrinks during the dehydration and transformation of kaolin as heated at 813 ~ 1223 K and 1223 ~ 1273 K, respectively. On other hand, the sintered sample shrinks during sintering process as heated at 1273 ~ 1473 K. Then, the sample shrinks during the elongated plate-like mullite formation as heated at 1473 ~ 1723 K. The sintered sample shows a monodispersed pore size distribution and the pore volume decrease but the average pore diameter increase from 0.6 to 1.5 mm with increasing the sintering temperature from 1373 to 1873 K for 1 h. By increasing the sintering temperature or duration, the in-situ skeleton mullite crystals and glassy phase promotes the expansion of the heated body, therefore increases the pore diameter and improves the open porosity, thus limits the overall densification.
參考文獻
1. H. Schneider, K. Okada and J. A. Pask, Mullite and Mullite Ceramics, John Wiley & Sons Ltd., New York, (1994) p 105.
2. S. M. Johnson and J. A. Pask, Role of impurities on formation of mullite from kaolinite and Al2O3-SiO2 mixture, Am. Ceram. Soc. Bull., 61 (1982) 838.
3. O. Matsuda, T. Watari, T. Torikai, Y. Yamasaki and H. Katsuki, Effects of Al2O3 and glass on formation of needle-like mullite from kaolin, J. Ceram. Soc. Jpn., 100 (1992) 719.
4. K. Hamano, H. Nakajima, F. Okuda and M. Konuma, Preparation of mullite ceramics from kaolin and aluminous materials (part 1): Effects of grain size and grinding of raw materials, J. Ceram. Soc. Jpn., 102 (1994) 80.
5. K. C. Liu, G. Thomas, A. Caballero, J. S. Moya and S. D. Aza, Mullite formation in kaolinite-a-alumina, Acta. Metall. Mater., 42 (1994) 489.
6. M. A. Sainz, F. J. Serrano, J. M. Amigo, J. Bastida and A. Caballero, XRD microstructural analysis of mullite obtained from kaolinite-alumina mixtures, J. Eur. Ceram. Soc., 20 (2000) 403.
7. J. Temuujin, K. J. D. MacKenzie, M. Schmücker, H. Schneider, J. McManus and S. Wimperis, Phase evolution in mechanically treated mixtures of kaolinite and alumina hydrates (gibbsite and boehmite), J. Eur. Ceram. Soc., 20 (2000) 413.
8. C. Y. Chen, G. S. Lan and W. H. Tuan, Preparation of mullite by reaction sintering of kaolinite and alumina, J. Eur. Ceram. Soc., 20 (2000) 2519.
9. Y. F. Liu, X. Q. Liu, H. Wei and G. Y. Meng, Porous mullite ceramics from national clay produced by gelcasting, Ceram. Inter., 27 (2001) 1.
10. Y. F. Liu, X. Q. Liu, S. W. Tao, G. Y. Meng and O. T. Sorensen, Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate, Ceram. Inter., 28 (2002) 479.
11. H. Katsuki, H. Takagi and O. Matsuda, Fabrication and properties of mullite ceramics with needle-like cerstals, Ceram. Trans., 31 (1993) 137.
12. H. Katsuki, S. Furuta and A. Shiraishi, Porous mullite honeycomb by hydrothermal treatment of fired kaolin bodies in NaOH, J. Porous mater., 2 (1996) 299.
13. H. Katsuki, S. Furuta and Komarneni, S., Convential-versus microwave- hydrothermal leaching of glass from sintered kaolinite to make porous mullite, J. Porous mater., 3 (1996) 127.
14. Y. Saito, S. Hayashi, A. Yasumari and K. Okada, Effects of calcining conditions of kaolinite on pore structures of mesoporous materials prepared by the selective leaching of calcined kaolinite, J. Porous mater., 3 (1996) 233.
15. V. Viswabaskaran, F. D. Gnanam and M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application, Appl. Clay Sci., 25 (2004) 29.
16. R. E. Grim, Clay Mineralogy, McGraw-Hill Inc., New York, 2nd ed., (1968) p 55.
17. G. W. Brindley and M. Nakahira, The kaolinite mullite reaction series: I. A survey of oustanding problems, J. Am. Ceram. Soc., 42 (1959) 311.
18. G. W. Brindley and M. Nakahira, The kaolinite mullite reaction series: II. Metakaolin, J. Am. Ceram. Soc., 42 (1959) 314.
19. G. W. Brindley and M. Nakahira, The kaolinite mullite reaction series: III. The high-temperature phases, J. Am. Ceram. Soc., 42 (1959) 319.
20. S. Lee, Y. J. Kim and H. S. Moon, Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope, Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope, J. Am. Ceram. Soc., 82 (1999) 2841.
21. A. K. Chakraborty and D. K. Ghosh, Reexamination of the kolinite-to- mullite reaction series, Reexamination of the kaolinite-to-mullite reaction series, J. Am. Ceram. Soc., 61 (1978) 170.
22. H. J. Borchardt and F. Danields, The application of differential thermal analysis to the study of reaction kinetics, J. Am. Chem. Soc., 79 (1957) 41.
23. A. R. Boccaccini, T. K. Khalil and M. Bücker, Activation energy for the mullitization of a diphasic gel obtained from fumed silica and boehmite sol, Mater. Lett., 38 (1999) 116.
24. A. L. Campos, N. T. Silva, F. C. L. Melo and M. A. S. Oliveria, Crystalli- zation kinetics of orthorhombic mullite from diphasic gels, J. Non-Cryst. Solids, 304 (2002) 19.
25. F. S. Yen, M. Y. Wang and J. L. Chang, Temperature reduction of q- to a-phase transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from boehmite, J. Cryst. Growth, 236 (2002) 197.
26. F. S. Yen, J. L. Chang and P. C. Yu, Relationships between DTA and DIL characteristics of nano-sized alumina powder during q- to a-phase tansformation, J. Cryst. Growth,, 246 (2002) 90.
27. A. Marotta, A. Buri and G. L. Valenti, Crystallization kinetics of gehlentite glass, J. Mater. Sci., 13 (1978) 2483.
28. A. Marotta and A. Buri, Kinetics of devitrification and differential thermal analysis, Thermo. Acta., 25 (1978) 155.
29. K. Matusita, S. Sakka, T. Maki and M. Tashiro, Study on crystallization of glass by differential thermal analysis. Effect of added oxide on crystallization of LiO2-SiO2 glasses, J. Mater. Sci., 10 (1975) 94.
30. K. Matusita and S. Sakka, Kinetic study of the crystallization of glass by differential scanning calorimetry, Phys. Chem. Glasses, 20 (1979) 81.
31. K. Matusita and M. Tashiro, Rate of homogeneous nucleation in alkali disilicate glasses, J. Non-Cryst. Solids, 11 (1973) 471.
32. K. Matusita, T. Maki and M. Tashiro, Effect of added oxides on the crystallization and phase separation of Li2O-3SiO2 glasses, Phys. Chem. Glasses, 15 (1974) 106.
33. K. Matusita, S. Sakka and Y. Matsui, Determination of the activation energy for crystal growth by differential thermal analysis, J. Mater. Sci., 10 (1975) 961.
34. K. Matusita and M. Tashiro, Effect of added oxides on the crystallization of Li2O-2SiO2 glasses Phys. Chem. Glasses, 14 (1973) 77.
35. Y. F. Chen, M. C. Wang and M. H. Hon, Phase transformation and growth of mullite in kaolin ceramics, J. Eur. Ceram. Soc., 24 (2003) 2389.
36. D. W. Henderson, Experimental analysis of non-isothermal transformation involving nucleation and growth, J. Thermal Anal., 15 (1979) 325.
37. 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,(1996) p 271.
38. J. S. Lee and S. C. Yu, Mullite formation kinetics of coprecipitated Al2O3-SiO2 gels, Mat. Res. Bull., 27 (1992) 405.
39. M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Phys., 7 (1939) 1103.
40. S. B. Wen, N. C. Wu, S. Yand and M. C. Wang, Effect of TiO2 addition on the crystallization of Li2O-Al2O3-4SiO2 precursor powders by a sol-gel process, J. Mater. Res., 14 (1999) 3559.
41. S. W. Freiman and L. L. Hench, Kinetics of crystallization in Li2O-SiO2 glasses, J. Am. Ceram. Soc., 51 (1968) 382.
42. ASTM, Standard test methods for apparent porosity, water absorption, apparent specific gravity and bulk density of burned refractory brick and shapes by boiling water, C 20-83 (1983).
43. S. J. Lukasiewicz, J. S. Reed, Specific permeability of porous compacts as described by a capillary model, J. Am. Ceram. Soc., 71 (1988) 1008.
44. J. S. Reed, Liquid permeability of packed particles: Why perpetuate the Carmen-Kozeny model?, J. Am. Ceram. Soc., 76 (1993) 547.
45. K. Ishizaki, S. Komarneni, M. Nanko, Porous ceramic membranes: preparation, transport properties and applications, Porous Materials, Kluwer Academic Publisher, London, (1998) p 214.
46. Y. M. Sung, Kinetics analysis of mullite formation reaction at high temperatures, Acta Mater., 48 (2000) 2157.
47. Y. M. Sung, Determination of interdiffusion coefficient of mullite formation reaction via kinetics analysis, J. Mater. Sci. Let., 20 (2001) 1433.
48. W. C. Wei and J. W. Halloran, Transformation kinetics of diphasic aluminosilicate gels, J. Am. Ceram. Soc., 71 (1998) 581.
49. S. H. Hong and G. L. Messing, Mullite transformation kinetics in P2O5-, TiO2-, and B2O3-doped aluminosilicate gels, J. Am. Ceram. Soc., 80 (1997) 1551.
50. S. H. Hong and G. L. Messing, Anisotropic grain growth in boria-doped diphasic mullite gels, J. Eur. Ceram. Soc., 19 (1999) 521.
51. D. X. Li and W. J. Thomson, Mullite formation kinetics of a single-phase gel, J. Am. Ceram. Soc., 73 (1990) 964.
52. D. X. Li and W. J. Thomson, Tetragonal to orthorhombic transformation during mullite formation, J. Mater. Res., 6 (1991) 819.
53. E. Tkalcec, R. Nass, J. Schmauch, H. Schmidt, S. Kurajica, A. Bezjak and H. Ivankovic, Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry, J. Non-Crystal. Solids., 223 (1998) 57.
54. S. Sundaresan and I. A. Aksay, Mullitization of diphasic aluminosilicate gels, J. Am. Ceram. Soc., 74 (1991) 2388.
55. T. Takei, Y. Kamesshima, A. Yasumori and K. Okada, Crystallization kinetics of mullite in alumina-silica glass fibers, J. Am. Ceram. Soc., 82 (1999) 2876.
56. B. O. Hildmann, H. Schneider and M. Schmücker, High temperature behavior of polycrystalline aluminosilicate fibers with mullite bulk composition. II. Kinetics of mullite formation, J. Eur. Ceram. Soc., 16 (1996) 287.
57. Y. F. Chen, M. C. Wang and M. H. Hon, Secondary mullitr formation in kaolin-Al2O3 ceramics, J. Mater. Res., 19 (2004) 806-814.
58. Y. F. Chen, M. C. Wang and M. H. Hon, Sintering behavior and pore structure development of kaolin-alumina ceramics, J. Ceram. Soc. Jpn., 112 (2004) S1265-S1271.
59. A. Gualtieri, M. Bellotto, G. Aetioli and S. M. Clark, Kinetics study of the kaolinite-mullite reaction sequence. Part II: Mullite formation, Phys. Chem. Miner., 22 (1995) 215.
60. C. J. McConville, W. E. Lee and J. H. Sharp, Microstructural evolution in fired kaolinite, Brit. Ceram. Tran., 97 (1998) 162.
61. O. Castelein, R. Guinebretière, J. P. Bonnet and P. Blanchart, Shape, size and composition of mullite nanocrystals from a rapidly sintered kaolin, J. Eur. Ceram. Soc., 21 (2001) 2369.
62. P. Pehak, G. Kunath-Fandrei, P. Losso, B. Hildmann, H. Schneider and C. Jäger, Study of the Al coordination in mullites with varing Al:Si ratio by 27Al NMR spectroscopy and X-ray diffraction Am. Miner., 83 (1998) 1266.
63. J. L. Holm, Kaolinites-mullite transformation in different Al2O3-SiO2 systems: Thermo-analytical studies, Phys. Chem. Chem. Phys., 3 (2001) 1362.
64. O. Castelein, B. Soulestin, J. P. Bonnet and P. Blanchart, The influence of heating rate on the thermal behavior and mullite formation from a kaolin raw material, Ceram. Int., 27 (2001) 517.
65. M. C. Wang, Thermal determinations of mullite crystallization of 65 % Al2O3-35 % SiO2 glass fibers, Chinese J. Mater. Sci., 24 (1992) 164.
66. J. D. C. McConnell and S. G. Fleet, Electron optical study of the thermal decomposition of kaolinite, Clay Miner., 8 (1970) 279.
67. J. Comer, Electron microscopy studies of mullite development in fired kaolinites, J. Am. Ceram. Soc., 43 (1960) 378.
68. C. Y. Chen, G. S. Lan and W. H. Tuan, Microstructural evolution of mullite during the sintering of kaolin powder compacts, Ceram. Trans., 26 (2000) 715.
69. J. Sanz, A. Madani, J. M. Serratosa, J. S. Moya and S. Aza, Aluminum-27 silicon-29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation, J. Am. Ceram. Soc., 71 (1988) c418.
70. Y. F. Chen, Y. H. Chang, M. C. Wang and M. H. Hon, Effects of Al2O3 addition on the phases, flow characteristics and morphology of the porous kaolin ceramics, J. Mat. Sci. Eng. A, 373 (2004) 221-228.
71. S. M. Johnson, J. A. Pask and J. S. Moya, Influence of impurities on high-temperature reactions of kaolinite, J. Am. Ceram. Soc., 65 (1982) 31.
72. I. A. Aksay, D. M. Dabbs and M. Sarikaya, Mullite for structural, electronic and optical applications, J. Am. Ceram. Soc., 74 (1991) 2343.
73. M. Schmücker, W. Albers and H. Schneider, Mullite formation by reaction sintering of quartz and a-Al2O3: a TEM study, J. Eur. Ceram. Soc., 14 (1994) 511.
74. E. F. Osborn and A. Muan, Rrevised and redrawn “Phase Equilibrium Diagrams of Oxide Systems”, Plate 5, American Ceramic Society and Edward Orton, Jr., Ceramic Foundation, 1960.
75. S. H. Risbud and J. A. Pask, SiO2-Al2O3 metastable phase equilibrium diagram without mullite, J. Mat. Sci., 13 (1978) 2449.
76. C. W. Burnham, Carnegie Inst., 63 (1964) 227.
77. H. J. Kleebe, F. Siegelin, T. Straubinger and G. Ziegler, Conversion of Al2O3-SiO2 powder mixtures to 3:2 mullite following the stable or metastable phase digagram, J. Eur. Ceram. Soc., 21 (2001) 2521.
78. C. Y. Chen and W. H. Tuan, The processing of kaolin powder compact, Ceram. Inter., 27 (2001) 795.
79. Y. F. Chen, M. C. Wang and M. H. Hon, Transformation kinetics for mullite in kaolin-Al2O3 ceramics, J. Mat. Res., 18 (2003) 1355.
80. Y. F. Chen, M. C. Wang and M. H. Hon, Kinetics of secondary mullite formation in kaolin-Al2O3 ceramics, Scripta Mater., 51 (2004) 213-235.
81. M. Belloto, A. Gualtieri, G. Artioli and S. M. Clark, Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite dehydroxylation, Phys. Chem. Minerals, 22 (1995) 207.
82. J. A. Pask and A. G. Evans, Ceramic Microstructures ’86, Plenum Press, New York, (1987) p 601.
83. J. M. Capus and R. M. German, Advances in Powder Metallurgy and Particulate Materials, vol. 9, Metal Powder Industries Federation, New Jersey, (1992) p 295.
84. F. D. Richardson and J. H. E. Jeffes, J. Iron Steel Inst., 160 (1948) 261.
85. R. M. German, Liquid Phase Sintering, Plenum Press, New York, (1985) p 127.
86. S. M. Lee and S. J. L. Kang, Theoretical analysis of liquid-phase sintering: pore filling theory, Acta Mater., 46 (1998) 3191.
87. I. Štubňa and T. Kozík, Permeability of the electroceramics to gas and its dependance on the firing temperature, Ceram. Inter., 23 (1996) 247.
88. J. K. Mackenzie and R. Shuttleworth, A phenomenolo-gical theory of sintering, Proc. Phys. Soc., 62 (1949) 833.
89. B. Kanka and H. Schneider, Sintering mechanisms and microstructural development of coprecipitated mullite, J. Mater. Sci., 29 (1994) 1239.