| 研究生: |
陳星佑 Chen, Shing-Iou |
|---|---|
| 論文名稱: |
強力刮齒刀靜態特徵角的分析 Analysis of Static Characteristic Angles of Power Skiving Tool |
| 指導教授: |
林昌進
Lin, Psang-Dain |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 強力刮齒刀 、國際標準組織刀具角度規範 、特徵角 |
| 外文關鍵詞: | Power skiving tool, ISO tool angle specification, Characteristic angles |
| 相關次數: | 點閱:60 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
齒輪是工業界中常見且重要的傳動零件,依據所使用的製造方式及加工程序不同,會影響齒輪的品質、精度與價格。齒輪的製造方式分為成形法與展成法,本研究所探討的強力刮齒法屬於展成法,且其相對於多數的傳統方法屬新穎的齒輪切削方式,可用於切削內齒輪與外齒輪,並具有連續切削的高切削效率,近年來此方法逐漸被廣為使用。強力刮齒法是利用齒輪與螺旋齒輪刀具之交錯軸的齒輪嚙合關係刮削出齒輪,其刀具的精度及切刃的幾何形狀會影響被加工的齒輪。
本研究旨在對強力刮齒刀之刀刃特徵角進行研究,使用國際標準組織(ISO)之刀具角度規範,對強力刮齒刀之特徵角建立靜態系統之數學模型,並驗證刮齒刀數學模型的可行性,且探討在不同的斜角面變數下,強力刮齒刀各切刃的特徵角度變化,以利強力刮齒法加工的預測。藉由本研究對強力刮齒的數學模型建立,提供未來強力刮齒刀設計得以更方便、更快速的分析刀具特徵角。
Gears are essential transmission parts and widely used in the industry. Its quality, accuracy, and price heavily depend on manufacturing methods and processing procedures. There are two manufacturing methods of gears: forming and generating.
The recently developed power skiving method is one of the generating methods. Compare with most traditional gear manufacturing methods, power skiving is a novel and high-efficiency method to produce internal gears and external gears by continuous cutting. The power skiving method is to scrape out the gear by using the cross-axis gear meshing relationship between the gear and helical gear cutter. The accuracy of the cutter and the geometry of the cutting edge will affect the gear to be machined.
The purpose of this study is to investigate the characteristic angles of the cutting edge of power skiving tool. Using the tool angle specification of the International Standard Organization (ISO), a mathematical model of the static system is established for the characteristic angles of the power skiving tool to verify the feasibility of the mathematical model of the power skiving tool. Also, explore the change of the characteristic angles of each cutting edge of the tool under different variables of the rake surface, to facilitate the prediction of the power skiving method. Based on the establishment of the mathematical model of the power skiving tool in this research, the design of the power skiving tool in the future can be used to analyze the characteristic angles of the tool more convenient and faster.
[1] F. L. Litvin, Alfonso Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, New York, 2004.
[2] 小原敏治,齒輪技術資料,小原齒車工業株式會社,埼玉縣川口市,2006。
[3] W. Pittler von,Verfahren zum Schneiden von Zahnradern mittels eines zahnrad-artigen, an den Stirnflachen der Zahne mit Schneidkanten versehen-en Schneidwerkzeuges, Patent Application, Germany, March, 1910.
[4] W. Pittler von, Method for internal gear skiving, German, Patent No.243514 Klasse 49 Gruppe 51, 1910.
[5] J. Kreschel, Gleason power skiving: technology and basics, Gleason Company Publication, Ludwigsburg, Germany, 2012.
[6] C. Kobialka, Contemporary gear pro-machining solutions, AGMA Tech Pap, 12FTM11, 2012.
[7] Q. C. Lao, B. Liu, Summary of Skiving Tool, Eng 48(1):7–9, 2014.
[8] M. Kojima, Gear skiving of involute internal spur gear (part 1: on the tooth profile), Bull JSME 17(106):511–518, 1974.
[9] M. Kojima, On the clearance angles of skiving cutter (part 2: helical type cutter for internal spur gear skiving), Bulle JSME 17(105):401–408, 1974.
[10] D. Spath, A. Huhsam, Skiving for high-performance machining of periodic structures, CIRP Ann. Manuf. Technol. 51, 91-94, 2002.
[11] 江智煜,應用強力刮齒法於六軸工具機刮削內齒輪之研究,國立成功大學,2016。
[12] S. Volker, K. Chirsttoph, A. Hermann, 3D-FEM modeling of gear skiving to investigate and chip formation mechanisms. Adv Mater Res 223:46–55, 2011.
[13] H. J. Stadtfeld, Power skiving of cylindrical gears on different machine platforms, Gear Technology, 31 (1) 52-62, 2014.
[14] E. Guo, R. Hong, X. Hung, C. Fang, Research on the design of skiving tool for machining involute gears, Journal of Mechanical Science and Technology 28(12) 5107~5115, 2014.
[15] C. Y. Tsai, Mathematical model for design and analysis of power skiving tool for involute gear cutting, Mechanism and Machine Theory 101, 195-208, 2016.
[16] C. Y. Tsai, P. D. Lin, Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center, Int. J. Adv. Manuf. Technol. 95, 609-623, 2018.
[17] W. A. Knight, G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, CRC Press, 2005.
[18] 曾乾生,薄刃鑽頭之刀具路徑與加工,博士論文,國立成功大學,2008。
[19] 王愈帆,螺旋端銑刀的分析與設計,碩士論文,國立成功大學,2010。
[20] 潘昱宏,車刀的設計與分析,碩士論文,國立成功大學,2010。
[21] 宋諺霖,滾齒刀靜態與動態特徵角的分析,國立成功大學,2019。
[22] F. L. Litvin, The Synthesis of Approximate Meshing for Spatial Gears,’ Journal of Mechanisms, Vol.4, pp.187-191.1968.
[23] C. H. Chen, ‘Boundary Curves, Singular Solutions, Complementary Conjugate Surfaces and Conjugation Analysis in Theory of Conjugate Surfaces,’ Proceedings of the 5th World Congress on Theory of Machines and Mechanisms, Montreal, Canada, pp.1478-1481.1979.
[24] C. H. Chen, A-3 Tooth Form, Proceedings of the International Symposium on Gearing and Power Transmissions, Tokyo, pp.11-15, 1981.
[25] 陳志新,共軛曲面基本原理,科學出版社,北京,1985。