| 研究生: |
黃巧雯 Huang, Chiao-Wen |
|---|---|
| 論文名稱: |
甲烷預混二甲醚對沖火焰之數值研究 Numerical Study on Opposed-Flow Flames of Methane Premixed with Dimethyl Ether |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 對沖火焰 、預混火焰 、二甲醚燃燒 |
| 外文關鍵詞: | Opposed-flow flame, Premixed combustion, Dimethyl ether, Methane, Numerical simulation |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用數值模擬方法,探討甲烷預混二甲醚於對稱對沖流預混火焰中的燃燒行為,利用CHEMKIN-PRO軟體建立一維對沖流火焰模型,在常壓、常溫條件下,系統性分析不同二甲醚體積比例(30%、50%、80%)及不同當量比(ϕ = 0.8、1.0、1.2)對火焰結構與燃燒特性之影響,研究內容包含火焰溫度分佈、主要與次要物種濃度、中間產物生成率、反應路徑分析、熱釋放率以及靈敏度分析,以深入探討混合燃料之燃燒機制。
數值結果顯示,隨著二甲醚比例增加,火焰反應性明顯提升,峰值火焰溫度上升,反應區域趨於集中,且關鍵自由基(H、O、OH)之生成量顯著增加,有效促進甲烷之氧化反應,進而提升火焰穩定性與抗拉伸能力;在當量比為1.0時,火焰呈現最佳燃燒表現,而在貧燃與富燃條件下,燃燒特性則受到自由基生成行為及中間產物反應路徑變化之影響。反應路徑與靈敏度分析結果進一步顯示,二甲醚可透過其快速分解所產生之中間物種,強化甲烷燃燒反應鏈,對整體熱釋放與燃燒效率具有關鍵影響。
This study presents a numerical investigation of opposed-flow premixed flames of methane (CH₄) blended with dimethyl ether (DME) under atmospheric pressure. With increasing concerns regarding carbon emissions and environmental sustainability, alternative clean fuels and fuel blending strategies have received growing attention. Dimethyl ether is regarded as a promising alternative fuel due to its high cetane number, oxygenated molecular structure, soot-free combustion characteristics, and compatibility with existing liquefied petroleum gas infrastructure. Methane, the primary component of natural gas, exhibits relatively clean combustion but suffers from low flame speed and limited flammability under stretched conditions. The present study aims to examine whether premixing DME with methane can enhance flame stability and combustion performance.
Numerical simulations were performed using the CHEMKIN-PRO software with an opposed-flow premixed flame configuration. Flame structures, temperature distributions, major and minor species concentrations, reaction pathways, heat release rates, and sensitivity coefficients were systematically analyzed under various equivalence ratios and fuel blending ratios. The results indicate that increasing the DME fraction significantly enhances flame reactivity, raises peak flame temperature, accelerates radical production, and improves resistance to flame stretch. These findings provide mechanistic insights into methane–DME blended combustion and support the potential application of DME as a combustion enhancer in clean energy systems.
[1]Putrasari,Y.,&Lim,O.(2021).Dimethyl ether as the next generation fuel to control nitrogen oxides and particulate matter emissions from internal combustion engines: A review.ACS Omega,6(1),32–37. https://doi.org/10.1021/acsomega.0c05091
[2]楊曉剛、司芳、郭林、劉秀偉、白應分(2005)。二甲醚的生產現狀及發展前景。《精細與專用化學品》,15,9–11、18。
[3]Varghese,R.J.,Kishore,V.R.,Akram,M.,Yoon,Y.,&Kumar,S.(2017).Burning velocities of DME (dimethyl ether)–air premixed flames at elevated temperatures.Energy,126, 34–41. https://doi.org/10.1016/j.energy.2017.03.021
[4]Jaap de Vries,Lowry,W.B.,Serinyel,Z.,Curran,H.J.,&Petersen,E.L.(2011). Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm.Fuel,90(1),331–338. https://doi.org/10.1016/j.fuel.2010.09.007
[5]Chen,Z.,Wei,L.,Huang,Z.,Miao,H.,Wang,X.,&Jiang,D.(2009).Measurement of laminar burning velocities of dimethyl ether–air premixed mixtures with N₂ and CO₂ dilution.Fuel,86(5–6),735–739. https://doi.org/10.1016/j.fuel.2008.07.023
[6]Daly,C.A.,Simmie,J.M.,Würmel,J.,Djebaïli,N.,&Paillard,C.(2001).Burning velocities of dimethyl ether and air.Combustion and Flame,125(4),1329–1340. https://doi.org/10.1016/S0010-2180(01)00223-3
[7]Huang,Z.,Wang,Q.,Yu,J.,Zhang,Y.,Zeng,K.,Miao,H.,&Jiang,D.(2007).Measurement of laminar burning velocity of dimethyl ether–air premixed mixtures.Fuel,86(15),2360–2366. https://doi.org/10.1016/j.fuel.2007.02.020
[8]Yu,H.,Hu,E.,Cheng,Y.,Yang,K.,Zhang,X.,&Huang,Z.(2015).Effects of hydrogen addition on the laminar flame speed and Markstein length of premixed dimethyl ether–air flames.Energy & Fuels,29(7),4567–4575. https://doi.org/10.1021/acs.energyfuels.5b00710
[9]Zhao,Z.,Kazakov,A.,&Dryer,F.L.(2004).Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry. Combustion and Flame, 139(1–2), 52–60. https://doi.org/10.1016/j.combustflame.2004.07.001
[10]Qin,X.,&Ju,Y.(2005).Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures.Proceedings of the Combustion Institute,30(1),233–240. https://doi.org/10.1016/j.proci.2004.08.169
[11]Wang,Y.L.,Holley,A.T.,Ji,C.,Egolfopoulos,F.N.,Tsotsis,T.T.,&Curran,H. J.(2009).Propagation and extinction of premixed dimethyl ether–air flames.Proceedings of the Combustion Institute,32(1),1035–1042. https://doi.org/10.1016/j.proci.2008.06.149
[12]Lu,M.,Fu,Z.,Yuan,X.,Sun,G.,&Jia,G.(2021).Study of the reduced kinetic mechanism of methane/dimethyl ether combustion.Fuel,303,121308. https://doi.org/10.1016/j.fuel.2021.121308
[13]Li,Y.,Su,S.,Wang,L.,Yin,J.,&Idiaba,S.(2022).Reduction and optimization for combustion mechanism of dimethyl ether–air mixtures. International Journal of Chemical Kinetics,54,142–153. https://doi.org/10.1002/kin.21564
[14]Haynes,W.M.(2016).CRC Handbook of Chemistry and Physics (97th ed.).CRC Press.https://doi.org/10.1201/9781315380476
[15]Glassman,I.,Yetter,R.A.,&Glumac,N.G.(2014).Combustion(5th ed.).Academic Press.
[16]Shrestha,K.P.,Eckart,S.,Elbaz,A.M.,Giri,B.R.,Fritsche,C.,Seidel,L.,Roberts,W.L.,Krause,H.,&Mauss,F.(2020).A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NOx interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature.Combustion and Flame,218,57–74. https://doi.org/10.1016/j.combustflame.2020.04.016
[17]Zhang,K.,Meng,X.,&Wu,J.(2014).Flammability limits of binary mixtures of dimethyl ether with five diluent gases.Journal of Loss Prevention in the Process Industries,29(1),138–143. https://doi.org/10.1016/j.jlp.2014.02.008
[18]Shrestha,K.P.,Eckart,S.,Elbaz,A.M.,Giri,B.R.,Fritsche,C.,Seidel,L.,Roberts,W.L.,Krause,H.,&Mauss,F.(2020).A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NOx interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature. Combustion and Flame,218,57–74. https://doi.org/10.1016/j.combustflame.2020.04.016
[19]Lowry,W.B.,Serinyel,Z.,Krejci,M.C.,Curran,H.J.,Bourque,G.,&Petersen,E.L.(2011).Effect of methane-dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length. Proceedings of the Combustion Institute,33(1),929–937. https://doi.org/10.1016/j.proci.2010.05.042
[20]Lu,M.,Fu,Z.,Yuan,X.,Sun,G.,&Jia,G.(2021).Study of the reduced kinetic mechanism of methane/dimethyl ether combustion.Fuel,303,121308. https://doi.org/10.1016/j.fuel.2021.121308
[21]Cao,J.,et al.(2023).Experimental and numerical study of non-premixed methane/dimethyl ether flames.International Journal of Minerals, Metallurgy and Materials,30,1349–1362.
[22]Lu,M.,Wan,K.,Zhu,X.,He,Y.,Zhu,Y.,Yuan,Y.,Cai,Q.,Gao,Z.,&Jiang,C.(2024).Investigation of swirl premixed dimethyl ether/methane flame stability and combustion characteristics in an industrial gas turbine combustor.Energy,310,133255. https://doi.org/10.1016/j.energy.2024.133255
[23]Zhang,R.,et al.(2022).Study of diffusion cool flames of DME in a counterflow configuration.Energies,15(14),5063. https://doi.org/10.3390/en15145063
[24]Li,Y.,et al.(2022).Reduction and optimization for combustion mechanism of dimethyl ether–air mixtures.International Journal of Chemical Kinetics,54(12),889–905.https://doi.org/10.1002/kin.21626
[25]Abu Saleh,A.,Hughes,K.J.,Hargrave,G.,&Yuan,R.(2024).Feasibility on equivalence ratio measurement via OH*, CH*, and C2* chemiluminescence and study of soot emissions in co-flow non-premixed DME/C1–C2 hydrocarbon flames.Frontiers in Fuels,4,1296502. https://doi.org/10.3389/ffuel.2023.1296502
[26Chen,Z.,Qin,X.,Ju,Y.,Zhao,Z.,Chaos,M.,&Dryer,F.L.(2007).High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures.Proceedings of the Combustion Institute,31(1),1215–1222.https://doi.org/10.1016/j.proci.2006.07.095
[27]Luo,J.,Li,W.,Tian,L.,&Liu,L.(2017).Experimental and numerical study of oxygen diluted partially premixed dimethyl ether/methane counterflow flame. Chemical Engineering Transactions,61,415–420. https://doi.org/10.3303/CET1761069
[28]Reuter,C.B.,Zhang,R.,Yehia,O.R.,Rezgui,Y.,&Ju,Y.(2018).Counterflow flame experiments and chemical kinetic modeling of dimethyl ether/methane mixtures.Combustion and Flame,196, 1–10. https://doi.org/10.1016/j.combustflame.2018.06.012
[29]Cao,J.,Zhou,X.,Zhang,R.,Yang,S.,&Liu,D.(2023).Experimental and numerical study of non-premixed dimethyl ether/methane-air hot flame at elevated pressures.Journal of Thermal Science,32,401–413. https://doi.org/10.1007/s11630-022-1730-6
[30]Zhou,X.,Zhang,R.,Yang,S.,&Liu,D.(2023).Inhibition effects of CH₄/CH₃OH on dimethyl ether cool flames.Journal of Thermal Science,32,2284–2296. https://doi.org/10.1007/s11630-023-1827-5
[31]Luo,J.,Li,W.,Tian,L.,&Liu,L.(2017).Experimental and numerical study of oxygen diluted partially premixed dimethyl ether/methane counterflow flame. Chemical Engineering Transactions,61,415–420.
[32]Vagelopoulos,C.M.,&Egolfopoulos,F.N.(1994).Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air.Symposium (International) on Combustion,25(1),1317–1323. https://doi.org/10.1016/S0082-0784(06)80732-4
[33]Lowry,W.B.,Serinyel,Z.,Krejci,M.C.,Curran,H.J.,Bourque,G.,&Petersen,E.L.(2011).Effect of methane–dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length.Proceedings of the Combustion Institute,33(1),929–937. https://doi.org/10.1016/j.proci.2010.05.042
[34]Xiang,L.,Chu,H.,Ren,F.,&Gu,M.(2019).Numerical analysis of the effect of CO₂ on combustion characteristics of laminar premixed methane/air flames.Journal of the Energy Institute,92(5),1487–1501. https://doi.org/10.1016/j.joei.2018.07.006
[35]Dirrenberger,P.,Le Gall,H.,Bounaceur,R.,Herbinet,O.,Glaude,P.A.,Konnov,A.,&Battin-Leclerc,F.(2011).Measurements of laminar flame velocity for components of natural gas.Energy & Fuels,25(9),3875–3884.https://doi.org/10.1021/ef200861a
[36]Curran,H.J.,Fischer,S.L.,&Dryer,F.L.(2000).The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors. International Journal of Chemical Kinetics,32(12),741–759. https://doi.org/10.1002/1097-4601(2000)32:12<741::AID-KIN1>3.0.CO;2-I
[37]Sehested,J.,Møgelberg,T.,Wallington,T.J.,Kaiser,E.W.,&Nielsen,O.J.(1996).Dimethyl ether oxidation: Kinetics and mechanism of the CH₃OCH₂ + O₂ reaction.The Journal of Physical Chemistry,100(43),17218–17225. https://doi.org/10.1021/jp961879k
[38]He,Y.,Wang,Z.,Yang,L.,Whiddon,R.,Li,Z.,Zhou,J.,&Cen,K.(2012).Investigation of laminar flame speeds of typical syngas using laser-based Bunsen method and kinetic simulation.Fuel,95,206–213. https://doi.org/10.1016/j.fuel.2011.09.031
[39]財團法人台灣綠色生產力基金會(無年份)。清潔替代燃料二甲醚概述。
[40]孫明、余林、郝志峰、余倩、彭蘭喬(無年份)。二甲醚反應化學的研究進展—分子催化。
[41]Liu,C.,Zhang,Y.,Xiong,D.,Huang,X.,Zhang,P.,Kang,Y.,Lu,X.,&Wang,Q.(2020).Flammability and propagation dynamics of planar freely propagating dimethyl ether premixed flame.ACS Omega,5(19),10965–10976. https://doi.org/10.1021/acsomega.0c00789
[42]Luo,C.,Yu,Z.,Wang,Y.,&Ai,Y.(2021).Experimental investigation of lean methane–air laminar premixed flames at engine-relevant temperatures.ACS Omega,6(26),17977–17987.https://doi.org/10.1021/acsomega.1c02166
[43]Mechanisms of CO and HCF or mation in SI Engines.
[44]Kondo,S.,Takizawa,K.,Takahashi,A.,&Tokuhashi,K.(2011).On the temperature dependence of flammability limits of gases.Journal of Hazardous Materials,187(1–3),585–590. https://doi.org/10.1016/j.jhazmat.2011.01.037
[45]Kurimoto,N.,Brumfield,B.,Yang,X.,Wada,T.,Diévart,P.,Wysocki,G.,&Ju,Y.(2015).Quantitative measurements of HO₂/H₂O₂ and intermediate species in low- and intermediate-temperature oxidation of dimethyl ether.Proceedings of the Combustion Institute,35(1),465–472. https://doi.org/10.1016/j.proci.2014.05.043
[46]Le Tan,N.,Djehiche,M.,Jain,C.D., Dagaut,P.,&Dayma,G.(2015).Quantification of HO₂ and other products of dimethyl ether oxidation in a jet-stirred reactor at elevated temperatures. Fuel, 158, 248–257. https://doi.org/10.1016/j.fuel.2015.05.042
[47]Chen,C.-H.,&Li,Y.-H.(2021).Role of N₂O and equivalence ratio on NOx formation of methane/nitrous oxide premixed flames.Combustion and Flame,223,42–54.https://doi.org/10.1016/j.combustflame.2020.09.019
[48]Muharam,Y.(2005).Detailed kinetic modelling of the oxidation and combustion of large hydrocarbons using an automatic generation of mechanisms.Ruprecht-Karls-Universität Heidelberg. https://doi.org/10.11588/heidok.00005923
[49]Schofield,K.,&Steinberg,M.(2007).CH and C₂ measurements imply a radical pool within a pool in acetylene flames.The Journal of Physical Chemistry A,111(11),2098–2114.https://doi.org/10.1021/jp0667689