簡易檢索 / 詳目顯示

研究生: 蘇昭榮
SU, CHAO-JUNG
論文名稱: 不同外邊長SUS304不鏽鋼方形管在不同彎曲方向循環彎曲負載下行為之實驗研究
Experimental Study on the Behavior of SUS304 Stainless Steel Square Tubes with Different Side Lengths under Cyclic Bending Loads in Various Bending Directions
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: SUS304不鏽鋼方形管不同外邊長不同彎曲方向控制曲率循環彎曲循環至斷裂圈數
外文關鍵詞: SUS304 stainless steel square tube, different outer side lengths, different bending directions, controlled curvature, cyclic bending, number of cycles to failure
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對SUS304不鏽鋼方形管在不同彎曲方向下,探討對稱控制曲率的循環彎曲負載作用下呈現的力學響應與破壞特性。其中方形管不同外邊長的尺寸分別為:20、30、40及50 mm,以及循環彎曲負載所使用的對稱控制曲率分別為:±0.5、±0.55、±0.6、±0.65、±0.7和±0.75 m-1,而不同的彎曲方向分別為0°、22.5°和45°,所有方形管的壁厚皆為1 mm。
    根據實驗結果發現,彎矩-曲率的關係顯示,所有方形管在循環彎曲過程最終會形成穩定的彈塑性迴圈。在固定彎曲方向的條件下,隨著外邊長增加,彎矩值亦隨之上升;相反地,當外邊長固定時,彎曲方向越大,所需的彎矩值也越高。此外,從外邊長變化-曲率的關係可觀察到,無論任何彎曲方向或外邊長尺寸,隨著循環次數增加,此關係均呈現出對稱、棘齒狀增長的趨勢,且外邊長或彎曲方向越大時,外邊長變化幅度亦隨之增加。
    在控制曲率與循環至斷裂圈數的關係方面,實驗發現,在相同的控制曲率,外邊長較大時,循環至損壞圈數就越少。進一步將上述關係繪製於雙對數座標圖中,可發現不同外邊長的方形管各自對應形成四條線性關係。最後,本研究建立了一套理論模型,以描述不同外邊長的SUS304不鏽鋼方形管在不同彎曲方向下,於對稱控制曲率循環彎曲負載條件下的控制曲率與循環至斷裂圈數的關係。理論分析與實驗數據比較後發現,兩者相當契合,證實該理論可有效描述實驗結果。

    This study focuses on investigating the mechanical response and failure characteristics of SUS304 stainless steel square tubes under cyclic bending with symmetric curvature control in different bending directions. The square tubes have outer side lengths of 20, 30, 40, and 50 mm, respectively. The symmetric curvature values used for cyclic bending are ±0.5, ±0.55, ±0.6, ±0.65, ±0.7, and ±0.75 m⁻¹. The bending directions examined are 0°, 22.5°, and 45°, and all square tubes have a wall thickness of 1 mm.
    According to the experimental results, the moment-curvature relationship indicates that all square tubes eventually form stable elastoplastic hysteresis loops during the cyclic bending process. Under a fixed bending direction, the bending moment increases with the outer side length. Conversely, when the outer side length is fixed, a larger bending direction requires a higher bending moment. Furthermore, from the relationship between outer side length variation and curvature, it is observed that regardless of the bending direction or outer side length, this relationship exhibits a symmetric, sawtooth-like growth trend as the number of cycles increases. Additionally, the magnitude of side length variation increases with either a larger outer side length or a greater bending direction.
    Regarding the relationship between controlled curvature and the number of cycles to failure, experimental results show that under the same controlled curvature, square tubes with larger outer side lengths require fewer cycles to reach failure. When this relationship is plotted on a log-log scale, four distinct linear trends emerge, each corresponding to a different outer side length. Finally, this study establishes a theoretical model to describe the relationship between controlled curvature and the number of cycles to failure for SUS304 stainless steel square tubes with different outer side lengths and bending directions under symmetric cyclic bending conditions. A comparison between the theoretical predictions and experimental data shows good agreement, confirming that the model effectively captures the experimental behavior.

    摘要 I 誌謝 XIX 目錄 XXI 表目錄 XXIII 圖目錄 XXIV 符號說明 XXVII 第一章、緒論 1 1-1研究背景 1 1-2文獻回顧 1 1-3研究目的 9 第二章、實驗設備 11 2-1彎管實驗機 11 2-2油壓伺服控制系統 16 2-3監控系統 24 2-4檢測儀器 27 2-5角度固定裝置 30 第三章、實驗方法與理論 33 3-1實驗材料與規格 33 3-2實驗原理 34 3-3實驗操作程序 37 3-4實驗數據整理 38 第四章、實驗結果與理論分析 46 4-1SUS304不鏽鋼方形管變形模式 46 4-2彎矩(M)-曲率()之關係 50 4-3外邊長變化(Δl/l o)-曲率(κ)之關係 54 4-4控制曲率(c/ o)-循環至損壞圈數(Nf)之關係 58 4-5理論分析 62 第五章、結論 68 參考文獻 70

    1.L. G. Brazier, “On the flexure of thin cylindrical shells and other thin sections”, Proceedings of the Royal Society, Series A, Vol. 116, No. 773, pp. 104-114 (1927).
    2.R. M. Korol, “Critical buckling strains of round tubes in flexure”, International Journal of Mechanics and Science, Vol. 21, No. 12, pp. 719-730 (1979).
    3.P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
    4.S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    5.E. Corona and S. Kyriakides, “On the collapse of inelastic tubes under combined bending and pressure”, International Journal of Solids and Structures, Vol. 24, No. 5, pp. 505-535 (1988).
    6.E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure”, Thin-Walled Structures, Vol. 12, No. 3, pp. 229-263 (1991).
    7.W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    8.W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    9.W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
    10.K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
    11.W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    12.K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel under cyclic bending”, Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
    13.K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
    14.K. L. Lee, C. Y. Hung, H. Y. Chang and W. F. Pan, “Buckling life estimation of circular tubes of different materials under cyclic bending”, Journal of Chinese Institute Engineers, Vol. 33, No. 2, pp. 177-189 (2010).
    15.K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
    16.K. L. Lee, C. M. Hsu and W. F. Pan, “The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending”, Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).
    17.K. L. Lee, C. C. Chung and W. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
    18.K. L. Lee, K. H. Chang and W. F. Pan, “Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending”, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
    19.K. L. Lee, M. L. Weng and W. F. Pan, “On the failure of round-hole tubes under cyclic bending”, Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).
    20.K. L. Lee, Y. C. Tsai and W. F. Pan, “Mean curvature effect on the response and failure of round-hole tubes submitted to cyclic bending”, Advances in Mechanical Engineering, Vol. 13, No. 11, pp. 1-14 (2021).
    21.M. C. Yu and W. F. Pan, “Failure of elliptical tubes with different long-short axis ratios under cyclic bending in different directions”, Metals, Vol. 13, No. 11, 1891, (2023).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE