| 研究生: |
謝俊宇 Xie, Jun-Yu |
|---|---|
| 論文名稱: |
利用NSGA-II 和有限元素法對Zigzag型微流道印刷式迴路熱交換器分析與最佳化 Analysis and optimization of the zigzag channel of PCHEs by using Nondominated Sorting Genetic Algorithm II and Finite element analysis |
| 指導教授: |
闕志哲
Chueh, Chih-Che |
| 共同指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 印刷式迴路熱交換器 、Zigzag 流道設計 、直管型流道 、蛇形狀流道 、Nelder Mead 、多目標最佳化 |
| 外文關鍵詞: | Printed Circuit Heat Exchanger, Zigzag channel design, Straight channel, Serpentine channel, Nelder Mead , Multi-objective optimization |
| 相關次數: | 點閱:186 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇研究中,首先,Zigzag流道之三個幾何設計變數: 入口長度、彎管角度和導圓角半徑。本研究利用數值求解連續方程式,Navier Stokes方程式和能量方程式,Zigzag流道之熱傳與水力性能表現可藉由有效性和無因次壓力降來評估。接著將討論三種幾何設計變數對性能表現之影響,考慮目標函數為壓力降和冷端出口溫度時,兩者無法同時改善。由於二次流動的發生,其擾動之機制減少了熱邊界層之厚度並增加通過壁面之熱通量。於是三個幾何設計變數對於二次流動強度表明出熱傳性能將為隨著較小之彎管角度、導圓角半徑和較大之入口長度。
然而,為了研究Zigzag 流道設計之多樣性,利用NSGA-II 演算法求解出考慮冷端出口溫度和壓力降為目標函數之多目標最佳化問題。其柏拉圖解將根據支配等級和擁擠距離被排列。而柏拉圖其中之特定一解(無因次壓力降6.169和有效性0.201) 和單直管流道進行比較。而最後,將直管型、Zigzag型和蛇形狀之印刷式迴路熱交換器利用有效性和壓力降進行評估。和實驗數據相比驗證後,可以發現出Zigzag型PCHE相比於其餘兩者,其熱傳性能較高。而結果顯示出,柏拉圖特定一解之PCHE 提升有效性(239%)的同時增加了最少的壓力降。
In the present study, firstly, the zigzag channel is investigated with three design variables: length of entrance (L_e), bending angle (θ_b) and radius of fillet (R_f ). The results are numerically investigated by solving the steady state continuity equation, Navier-Stokes equations and energy equation. Therefore, the heat transfer and hydraulic performance of zigzag channel can be estimated by effectiveness (Feff) and non-dimensional pressure drop (Fp). Secondly, the effect of geometric parameters is discussed, respectively. Considering the objective function as non-dimensional pressure drop and effectiveness can not be improved without degrading the other objective, it means that two objective functions can’t be simultaneously enhanced. Then, owing to the secondary flow occurring, the mixing mechanism decreases the thickness of the thermal boundary layer which enlarges the heat flux to pass through the wall. Consequently, the variation of secondary flow intensity of three design variables reveals that heat transfer performance increases with the lower θ_b and R_f also larger L_e. However, to investigate the diversity of zigzag channel design, the multi-objective optimization problem that considering the effectiveness and non-dimensional pressure drop as the objective function is implemented by Non dominated Sorting Genetic Algorithm II. The Pareto fronts are sorted by the dominating rank and crowding distance. The particular solution of Pareto fronts (with non-dimensional pressure drop equals 6.169 and the effectiveness is 0.201) is compared with the single straight channel. Lastly, the PCHE is equipped with straight channels, zigzag and serpentine flow channels, allowing us to numerically investigate the PCHE performance in terms of the effectiveness and non-dimensional pressure drop. With the validation by the previous experimental data, it is found that the PCHE with zigzag flow channels, compared with the PCHE with the low passages or with the serpentine flow channels, possesses significant heat transfer enhancement by the generation of the so-called mixing effect accompanied with eddy structures accomplishing the heat transfer enhancement. In conclusion, the zigzag channels PCHE with the Pareto front gets the effect of improving effectiveness by increasing less pressure drop penalty.
1. Hoang, A.T., Waste heat recovery from diesel engines based on Organic Rankine Cycle. Applied energy, 2018. 231: p. 138-166.
2. Tchanche, B.F., G. Papadakis, G. Lambrinos, and A. Frangoudakis, Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering, 2009. 29(11-12): p. 2468-2476.
3. Hijriawan, M., N. Pambudi, M. Biddinika, D. Wijayanto, I. Kuncoro, B. Rudiyanto, and K. Wibowo. Organic Rankine Cycle (ORC) in geothermal power plants. in Journal of Physics: Conference Series. 2019. IOP Publishing.
4. Heinrich, M., Kay, JM; Nedderman, RM, Fluidmechanics and Transfer Processes. Cambridge etc., Cambridge University Press 1985. XVIII, 602 S.,£ 45.00 CH/c. 69.00.ISBN0‐521‐30303‐6.£17.50AP/b. 29.95. ISBN 0‐521‐31624‐3. 1987, Wiley Online Library.
5. Incropera, F. and D. De Witt, Fundamentals of heat and mass transfer, Third Edit. ed. Jonn Wiley & Sons. 1990, Inc.
6. Peng, X., D. Li, J. Li, S. Jiang, and Q. Gao, Improvement of flow distribution by new inlet header configuration with splitter plates for plate-fin heat exchanger. Energies, 2020. 13(6): p. 1323.
7. Guo, Z., D. Li, and B. Wang, A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 1998. 41(14): p. 2221-2225.
8. Zohuri, B., Compact heat exchangers. 2017: Springer.
9. Li, Q., G. Flamant, X. Yuan, P. Neveu, and L. Luo, Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4855-4875.
10. Ahn, Y., S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, and J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology, 2015. 47(6): p. 647-661.
11. Chai, L. and S.A. Tassou, A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Thermal Science and Engineering Progress, 2020. 18: p. 100543.
12. Dyreby, J., S. Klein, G. Nellis, and D. Reindl, Design considerations for supercritical carbon dioxide Brayton cycles with recompression. Journal of Engineering for Gas Turbines and Power, 2014. 136(10).
13. Chen, M., X. Sun, R.N. Christensen, I. Skavdahl, V. Utgikar, and P. Sabharwall, Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger. Applied Thermal Engineering, 2016. 108: p. 1409-1417.
14. Seo, J.-W., Y.-H. Kim, D. Kim, Y.-D. Choi, and K.-J. Lee, Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers. Entropy, 2015. 17(5): p. 3438-3457.
15. Lee, H.-S., Diffusion bonding of metal alloys in aerospace and other applications, in Welding and Joining of Aerospace Materials. 2012, Elsevier. p. 320-344.
16. Kareem, Z.S., M.M. Jaafar, T.M. Lazim, S. Abdullah, and A.F. Abdulwahid, Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 2015. 68: p. 22-38.
17. Aneesh, A., A. Sharma, A. Srivastava, and P. Chaudhury, Effects of wavy channel configurations on thermal-hydraulic characteristics of Printed Circuit Heat Exchanger (PCHE). International Journal of Heat and Mass Transfer, 2018. 118: p. 304-315.
18. Lee, S.-M. and K.-Y. Kim, Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations. Heat and Mass Transfer, 2013. 49(7): p. 1021-1028.
19. Zhao, Z., Y. Zhou, X. Ma, X. Chen, S. Li, and S. Yang, Effect of different zigzag channel shapes of PCHEs on heat transfer performance of supercritical LNG. Energies, 2019. 12(11): p. 2085.
20. Tsuzuki, N., Y. Kato, and T. Ishiduka, High performance printed circuit heat exchanger. Applied Thermal Engineering, 2007. 27(10): p. 1702-1707.
21. Kim, D.E., M.H. Kim, J.E. Cha, and S.O. Kim, Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model. Nuclear Engineering and Design, 2008. 238(12): p. 3269-3276.
22. Awais, M. and A.A. Bhuiyan, Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Thermal Science and Engineering Progress, 2018. 5: p. 524-545.
23. Hestenes, M.R. and E. Stiefel, Methods of conjugate gradients for solving linear systems. Vol. 49. 1952: NBS Washington, DC.
24. Levenberg, K., A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 1944. 2(2): p. 164-168.
25. Lemaréchal, C., Cauchy and the gradient method. Doc Math Extra, 2012. 251(254): p. 10.
26. McKinnon, K.I., Convergence of the Nelder--Mead Simplex method to a nonstationary Point. SIAM Journal on optimization, 1998. 9(1): p. 148-158.
27. Powell, M.J., The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 2009: p. 26-46.
28. Li, S., A guided Monte Carlo method for optimization problems. International Journal of Modern Physics C, 2002. 13(10): p. 1365-1374.
29. Rao, R.V., A. Saroj, P. Ocloń, and J. Taler, Design optimization of heat exchangers with advanced optimization techniques: a review. Archives of Computational Methods in Engineering, 2020. 27(2): p. 517-548.
30. Sanaye, S. and H. Hajabdollahi, Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Applied energy, 2010. 87(6): p. 1893-1902.
31. Xie, G., B. Sundén, and Q. Wang, Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering, 2008. 28(8-9): p. 895-906.
32. Chang, C.-Y., W.-H. Chen, L.H. Saw, A.A. Arpia, and M. Carrera Uribe, Performance Analysis of a Printed Circuit Heat Exchanger with a Novel Mirror-Symmetric Channel Design. Energies, 2021. 14(14): p. 4252.
33. Multiphysics, C., Comsol multiphysics user guide (version 4.3 a). COMSOL, AB, 2012. 39.
34. Huang, P., J. Bardina, and T. Coakley, Turbulence modeling validation, testing, and development. NASA technical memorandum, 1997. 110446: p. 147.
35. Menter, F. Zonal two equation kw turbulence models for aerodynamic flows. in 23rd fluid dynamics, plasmadynamics, and lasers conference. 1993.
36. Song, K., W. Hu, S. Liu, and L. Wang, Quantitative relationship between secondary flow intensity and heat transfer intensity in flat-tube-and-fin air heat exchanger with vortex generators. Applied Thermal Engineering, 2016. 103: p. 1064-1070.
37. Nelder, J.A. and R. Mead, A simplex method for function minimization. The computer journal, 1965. 7(4): p. 308-313.
38. Deb, K., Multi-objective optimization, in Search methodologies. 2014, Springer. p. 403-449.
39. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 2002. 6(2): p. 182-197.
40. Hanjalic, K. and B. Launder, A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech, 1972. 52(4): p. 609-638.
41. Wilcox, D.C., Formulation of the kw turbulence model revisited. AIAA journal, 2008. 46(11): p. 2823-2838.
42. Jacobi, A. and R. Shah, Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Experimental Thermal and Fluid Science, 1995. 11(3): p. 295-309.
43. Dean, W.R., XVI. Note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927. 4(20): p. 208-223.
44. Khan, H.H., A. Sharma, A. Srivastava, and P. Chaudhuri, Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger. Applied Thermal Engineering, 2015. 87: p. 519-528.
45. Raul, A., B. Bhasme, and R. Maurya, A numerical investigation of fluid flow maldistribution in inlet header configuration of plate fin heat exchanger. Energy Procedia, 2016. 90: p. 267-275.
46. Shojaeefard, M.H., S.D. Nourbakhsh, and J. Zare, An investigation of the effects of geometry design on refrigerant flow mal-distribution in parallel flow condenser using a hybrid method of finite element approach and CFD simulation. Applied Thermal Engineering, 2017. 112: p. 431-449.
47. Roy, V., S. Majumder, and D. Sanyal, Analysis of the turbulent fluid flow in an axi-symmetric sudden expansion. International Journal of Engineering Science and Technology, 2010. 2(6): p. 1569-1574.
48. Harley, P., S. Spence, J. Early, D. Filsinger, and M. Dietrich. Inlet recirculation in automotive turbocharger centrifugal compressors. in 11th International Conference on Turbocharger and Turbocharging, IMechE, London. 2014.
49. Ke, H., Y. Lin, Z. Ke, Q. Xiao, Z. Wei, K. Chen, and H. Xu, Analysis exploring the uniformity of flow distribution in multi-channels for the application of printed circuit heat exchangers. Symmetry, 2020. 12(2): p. 314.
50. Munson, B.R., T.H. Okiishi, W.W. Huebsch, and A.P. Rothmayer, Fluid mechanics. 2013: Wiley Singapore.
51. Stewart, M., Surface Production Operations: Volume III: Facility Piping and Pipeline Systems. 2015: Gulf Professional Publishing.
52. Marshall, S.D., B. Li, R. Arayanarakool, P. Seng Lee, L. Balasubramaniam, and P.C. Chen, Heat exchanger improvement via curved microfluidic channels: Impacts of cross-sectional geometry and dean vortex strength. Journal of Heat Transfer, 2018. 140(1).