簡易檢索 / 詳目顯示

研究生: 周仕勳
Chou, Shih-Hsun
論文名稱: 水力力學耦合分析應用於降雨引致土壤邊坡破壞之依時預警
Applications of Coupled Hydro-mechanical Analysis on Time-dependent Warning of Rainfall-induced Soil Slope Failures
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 176
中文關鍵詞: 邊坡穩定非飽和土壤入滲分析物聯網感測依時預警
外文關鍵詞: Slope stability, unsaturated soil, infiltration analysis, IoT sensing, time-dependent early-warning
相關次數: 點閱:162下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 山區面積佔台灣總面積約70 %,地質年代年輕且構造運動頻繁致使山區眾多區域地質破碎,且台灣年降雨量在世界排前10位,降雨多集中於夏季、颱風時期,強降雨致使山崩、土石流等地質災害頻傳,因此,降雨引致地質災害為為重要課題。目前常用邊坡災害預警方法多採經驗法則,依照歷史破壞案例進行統計分析並訂定相關警戒值,常用於土石流警戒之雨量警戒值即屬其中之一,此類方法具備簡易運用特性,因此廣泛使用於目前各相關單位,但經驗法屬區域、統計之概念,隨著氣候變遷,瞬時降雨強度明顯增強之情況下,經驗法仍有不足之處。本研究以土壤邊坡破壞機制區分淺層破壞與深層破壞,並發展符合其破壞機制之依時預警架構,基於考量水利與力學特性之水力力學耦合分析方法,依時分析降雨引致之土體水頭與有效應力耦合變化,建立無限土壤邊坡水力力學耦合分析架構,並以特定深度之體積含水量與地下水位作為淺層與深層破壞之依時監測指標,配合自主研發之物聯網感測模組,可提供監測場址即時與連續水力反應,作為警戒與行動依據。後續以甲仙攔河堰通達道路邊坡與台20線52公里處邊坡作為淺層與深層土壤邊坡潛在破壞場址,依現有鑽探與試驗結果,配合無限土壤邊坡水力力學耦合分析架構,客製化場址依時預警系統。研究成果適用於已知滑動面與場址相關水利與力學參數之重要邊坡保全對象,在考量嚴謹力學機制之無限土壤邊坡水力力學耦合分析架構下,依場址特性建立客製化依時預警,可增進預警系統之可靠性,並與傳統經驗法互補,提供不同需求之預警架構。

    Under climate change, the landslide disaster induced by rainfall has become frequent than before. The empirical warning method based on the statistics results of history failure case, the short-duration intense rainfall cause inaccuracy in the empirical method. In this research, a time-dependent warning framework for the shallow and deep soil slope failure proposed. Based on the coupled hydromechanical analysis, the time-dependent infiltration analysis and slope stability analysis performed. Under the consideration of the failure mechanism of soil slope, the volumetric water content or the groundwater elevation is being as a time-dependent index for monitoring the failure behavior of a shallow or deep slope site. Moreover, the developed IoT sensing module can provide the real-time and continuous hydromechanical response in filed under the rainfall event. From above, a customized time-dependent warning system for rainfall-induced soil slope failure is constructed. The research results can provide judgment based on field evacuation for local administration.

    摘要 I Extended Abstract III 誌謝 X 目錄 XI 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 1.3 研究流程與架構 7 第二章 文獻回顧 9 2.1 邊坡破壞與穩定分析 9 2.2 非飽和土壤特性與強度 17 2.3 降雨入滲與滲流行為 22 2.4 無限邊坡水力力學耦合邊坡穩定分析 32 2.5 坡地監測與預警系統 36 第三章 無限邊坡水力力學耦合邊坡穩定分析 43 3.1 一維垂直入滲模擬與驗證 43 3.2 淺層與深層水力力學耦合邊坡穩定分析 55 3.3 邊坡破壞依時預警架構 69 第四章 物聯網即時監測系統 73 4.1 微機電系統 74 4.2 感測端模組(sensor node) 94 4.3 閘道端模組(gateway) 107 4.4 太陽能供電與定時重啟系統 109 4.5 雲端平台(cloud platform) 113 第五章 依時性預警系統建立 123 5.1 淺層滑動場址 123 5.2 深層滑動場址 134 第六章 結論與建議 174 6.1 結論 174 6.2 建議 176 參考文獻 Ref.-1 附錄 App.-1

    1.水土保持局,2002,梨山地區管理基準值訂定,梨山地區地層滑動整治計畫成效評估研討會論文集。
    2.中央地質調查所,2008,台灣坡地環境地質圖分幅資料庫二萬五千分之一-甲仙圖幅,經濟部,研究報告。
    3.李明熹,2006,土石流發生降雨警戒分析及其應用,國立成功大學水利及海洋工程研究所,博士論文。
    4.李秉乾、許盈松、許懷後,2004,山區道路邊坡監測系統自動化及緊急臨時通報,交通部科技顧問室,研究報告。
    5.交通部,2015,公路邊坡工程設計規範,交通技術標準規範公路類公路工程部,研究報告。
    6.連惠邦,2017,土砂災害與防治,五南出版社,教科書。
    7.青山工程,2015,台20線地質鑽探報告,交通部五工處,研究報告。
    8.周南山,2005,台灣地區山區道路規劃設計參考手冊,行政院公共工程委員會,研究報告。
    9.洪芯琦,2018,崩積層邊坡滑動即時雲端監測系統研發,國立成功大學土木工程研究所,碩士論文。
    10.倪勝火,2013,暴雨下非飽和土壤公路邊坡之破壞機制監測與分析-總計畫(2/2),行政院國家科學委員會補助專題研究計畫,期末報告。
    11.陳振宇、陳均維、陳國威、林詠喬,2019,坡地降雨致災熱區警戒模式,中華水土保持學報,50(1),1-10。
    12.陳志芳、謝明志、張文忠、黃安斌、許智超、周仕勳、趙慶宇、甯敘堯,2015,公路邊坡崩塌監測之無線感測網路模組研發(1/2),交通部運輸研究所,研究報告。
    13.黃安斌、林志平、廖志中、潘以文、湯士弘、簡旭君、吳政達、葉致翔、盧吉勇、楊培熙,2002,先進邊坡監測系統之研發,中國土木水利學會會刊,29(2),65-78。
    14.黃信博,2016,應用非飽和單剪於降雨入滲引致淺層邊坡滑動模擬之研究,國立成功大學土木工程研究所,碩士論文。
    15.游裕偉,2017,臺北市貓空纜車T16塔柱下邊坡整治工程(上),地工技術。
    16.曾致仁,2017,降雨引致邊坡地下水位變動及作為邊坡崩壞與警指標之研究,國立成功大學土木工程研究所,碩士論文。
    17.趙慶宇,2015,淺層非飽和邊坡破壞機制之研究,國立成功大學土木工程研究所,碩士論文。
    18.張達德、蔡育秀、李宏徹、楊凱鈞,2013,無線感測網路應用於邊坡穩定即時監測系統的研究,第十五屆大地工程學術研討會。
    19.張文忠、黃安斌、陳志芳、謝明志、許智超,2016,公路邊坡崩塌監測之無線感測網路模組研發(2/2),交通部運輸研究所,研究報告。
    20.傅桂霖、吳瑞鵬與黃祥慶,2014,泥岩區地滑監測與分析之探討,水土保持學報,46(3),1079-1092。
    21.蕭涵,2017,即時淺層邊坡滑動無線監測模組之研發,國立成功大學土木工程研究所,碩士論文。
    22.Baum, R. L., Savage, W. Z. and Godt, J. W. (2002). TRIGRS—A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. USGS, research report.
    23.Bodman, G. B. and Colman, E. A. (1944). “Moisture and energy conditions during downward entry of water into soils.” Science Society of America Journal, 8, 116-122.
    24.Chang, W. J., Chang, C. W. and Zeng, J. K., 2014, “Liquefaction characteristics of gap-graded gravelly soils in K0 condition”, Soil Dynamics and Earthquake Engineering, 56, 74–85.
    25.Cho, S. E., and Lee, S. R., (2002). “Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 128(9), 756-763.
    26.Chong, C. Y. and Kumar, S. P. (2003). “Sensor networks – evolution, opportunities, and challenges.” Proceedings of the IEEE, 91(8), 1247-1256.
    27.Chow, V. T., Maidment, D. R. and Mays, L. W. (2000). Applied hydrology. McGraw-Hill, Inc.
    28.Collins, B.D., and Znidarcic, D. (2004). “Stability analyses of rainfall induced landslides.” Journal of Geotechnical and Geoenvironmental Engineering, 130, 362-372.
    29.Dai, F. C., Lee, C. F. and Wang, S. J. (1999). “Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong.” Engineering Geology, 51(4), 279-290.
    30.Darcy, H. (1856). “Les fontaines publiques de la ville de Dijon.” Paris: Dalmont. (in French)
    31.Fredlund, D. G., Morgenstern, N. R. and Widger, R. A. (1978). “The shear strength of unsaturated soils.” Canadian Geotechnical Journal, 15(3), 313-321.
    32.Fredlund, D. G. and Rahardjo, H. (1993). Soil mechanics for unsaturated soils. New York, Wiley.
    33.Fredlund, D. G., Xing, A., Fredlund, M. D. and Barbour, S. L. (1995). “The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.” Canadian Geotechnical Journal, 32(3), 440-448.
    34.Fredlund, D. G., Rahardjo, H., Fredlund, M. D. (2012). Unsaturated soil mechanics in engineering practice. John Wiley & Sons, Inc.
    35.Freeze, R. A. (1969). “The mechanism of natural ground-water recharge and discharge 1 – laboratory column experiments and field measurements.” Water Resources Research, 6(1), 138-155.
    36.Freeze, R. A. and Banner, J. (1970). “The mechanism of natural ground-water recharge and discharge 2 – laboratory column experiments and field measurements.” Water Resources Research, 6(1), 138-155.
    37.Freeze, R. A. and Cherry, J. A. (1979). Groundwater. textbook.
    38.Gan, K. M., Fredlund, D. G. and Rahardjo, H. (1988). “Determination of shear strength parameters of an unsaturated soil using the direct shear test.” Canadian Geotechnical Journal, 25(3), 500-510.
    39.Green, W. H. and Ampt, G. A. (1911). “Studies onf soil physics 1 – the flow of air and water through soils.” Journal of Agricultural Science, 4(1), 1-24.
    40.GEO (1998). Geotechnical manual for slopes. Civil Engineering and Development Department, Hong Kong, research report.
    41.Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P. J. and Vachaud, G. (1977). “A comparison of numerical simulation models for one-dimensional infiltration.” Soil Science Society of America Journal, 41(2), 285-294.
    42.Highland, L.M., and Bobrowsky, Peter, (2008). “The landslide handbook—A guide to understanding landslides: Reston, Virginia.” U.S. Geological Survey, 1325, 129.
    43.Honeywell. (2013). Effectively using pressure, load, and torque sensors with today’s data acquisition systems. Honeywell International Inc., user manual.
    44.Huang, A. B., Lee, J. T., Ho, Y. T., Chiu, Y. F. and Cheng, S. Y. (2012). “Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements.” Soils and Foundations, 52(4), 737-747.
    45.Iverson, R. M. (2000). “Landslide triggering by rain infiltration.” Water Resources Research, 36(7), 1897-1910.
    46.Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S. and Zatkin, R. S. (1987). “Real-time landslide warning during heavy rainfall.” Science, New Series, 238, 921-925.
    47.Koukis, G., Ziourkas, C. (1991). “Slope instability phenomena in Greece: a statistical analysis.” Bulletin of the International Association of Engineering Geology, 43, 47-60.
    48.Kurahashi, T., Yajima, Y., Sasaki, Y. (2008). “Landslide disasters and hazard maps along national highways in Japan.” In: The 2nd East Asia Landslides Symposium, Seoul, Korea, May 22–23, 2008, 14
    49.Mein, R. G. and Larson, C. L. (1973). “Modeling infiltration during a steady rain.” Water Resources Research, 9(2), 384-394.
    50.Okada, K. (2005). “Soil water index.” Sokkoujihou No.69, 5(5), 67-100. (in Japanese)
    51.Oloo, S. Y. and Fredlund, D. G. (1996). “A method for determination of b for statically compacted soils.” Canadian Geotechnical Journal, 33, 272-280.
    52.Osanai, N., Tomita, Y., Akiyama, K. and Matsushita, T. (2009). “Realty of cliff failure disaster.” Technical note of national institute for land and infrastructure management, No.530, 52. (in Japanese).
    53.Osanai, N., Shimizu, T., Kuramoto, K., Kojima, S. and Noro, T. (2010). “Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network.” Landslides, 7(3), 325-338.
    54.Philip, J. R. (1956). “The theory of infiltration: 5 – the influence of the initial moisture content.” Soil Science, 84(4), 329-340.
    55.Randall W. J. (2005). “Landslide Hazards at La Conchita, California”, USGS, Research report.
    56.Richards, L. A. (1931). “Capillary conduction of liquids through porous mediums.” Physics, 1, 318-334.
    57.Saito, M. (1969). “Research on forecasting the time of occurrence of slope failure.” The Japanese Geotechnical Society, 10(3), 135-142. (in Japanese)
    58.Santacana, N., Baeza, B., Corominas, J., Paz, A. D. and Marturia, J. (2003). “A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area.” Journal of Natural Hazards, 30(3), 281-295.
    59.Taylor, D. W. (1948). Fundamentals of soil mechanics, John wiley & Sons, Inc, New York.
    60.Terzaghi, K. (1936). “The shear resistance of saturated soils.” Proceedings of the 1th International Conference on Soil Mechanics and Foundation Engineering, Cambridge, 1, 54-56.
    61.Uchimura, T., Towhata, I., Wang, L. and Seko, I. (2008). “Simple and low-cost wireless monitoring units for slope failure.” In: Proc. of the First World Landslide Forum, International Consortium on Landslides (ICL), Tokyo, 611–614
    62.USGS (2005). Landslide Hazards and Planning, Research Report, No. 533/534.
    63.Van Asch, T. W. J., Buma, J. and Van Beek, L.P.H. (1999). “ A view on some hydrological triggering systems in landslides.” Geomorphology, 30, 25-32.
    64.Van Genuchten M. (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Science Society of America Journal, 44, 892–898.
    65.Varnes, D. J. (1978). “Slope movement types and processes.” In: Special Report 176: Landslides: Analysis and Control, Transportation and Road Research Board, National Academy of Science, Washington D. C., 11-33.
    66.Wang, C. C., Chang, W. J., Huang, A. B., Chou, S. H. and Chien, Y. C. (2018). “A simplified monitoring and warning system against shallow rainfall induced slope failures.”, Canadian Geotechnical Journal, 55(10), 1421-1432.
    67.World Band (2005). Natural disaster hotspots: a global risk analysis, research report.
    68.Zezere, J. L., Trigo, R. M., Trigo, I. F. (2005). “Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation.” Natural Hazards and Earth System Sciences, 5(3), 331-344.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE